Skip to main content

Single Neuron Models

  • Chapter
  • First Online:
Stochastic Neuron Models

Part of the book series: Mathematical Biosciences Institute Lecture Series ((STOCHBS,volume 1.5))

Abstract

Neuron models seem to come in three types: binary, threshold, and dynamical. We indicate some of the potential problems for probabilists associated with each type. In each case we first describe the deterministic model and its characteristics and then indicate how introducing noise, or stochasticity, into the model affects its behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenwood, P.E., McDonnell, M.D., Ward, L.M.: Dynamics of gamma bursts in local field potentials. Neural Comput. 27, 74–103 (2015)

    Article  Google Scholar 

  2. Chow, C.C., White, J.A.: Spontaneous action potentials due to channel fluctuations. Biophys. J. 71, 3013–3021 (1996)

    Article  Google Scholar 

  3. Rowat, P.F., Greenwood, P.E.: The ISI distribution of the Hodgkin-Huxley neuron. Front. Comput. Neurosci. 8, 111 (2014)

    Article  Google Scholar 

  4. Longtin, A.: Stochastic resonance in neuron models. J. Stat. Phys. 70(1/2), 309–327 (1993)

    Article  MATH  Google Scholar 

  5. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in neurons activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodova, K., Paydarfar, D., Forger, B.: Characterizing spiking in noisy type II neurons. J. Theor. Biol. 365, 40–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sacerdote, L., Giraudo, M.T.: Stochastic integrate and fire models: a review of mathematical methods and their applications. In: Stochastic Biomathematical Models. Lecture Notes in Mathematics, pp. 99–142. Springer, New York (2013)

    Google Scholar 

  8. Kurtz, T.: Strong approximation theorems for density dependent Markov chains. Stoch. Process. Appl. 6, 223–240 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burkill, A.N.: A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol. Cybern. 95, 1–19 (2006)

    Google Scholar 

  10. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    Article  Google Scholar 

  11. Izhikevich, E.M., Edelman, G.M.: Large-scale models of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. U. S. A. 105(9), 3593–3598 (2008)

    Article  Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  14. Skaugen, E., Walløe, L.: Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol. Scand. 107, 343–363 (1979)

    Article  Google Scholar 

  15. Rowat, P.F.: Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Comput. 19, 1215–1250 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rowat, P.F., Greenwood, P.E.: Identification and continuity of the distributions of burst-length and interspike intervals in the stochastic Morris-Lecar neuron. Neural Comput. 23(12), 3094–3124 (2011)

    Article  Google Scholar 

  17. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  18. Ditlevsen, S., Greenwood, P.E.: The Morris-Lecar neuron model embeds a leaky integrate-and-fire model. J. Math. Biol. 67, 239–259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bressloff, P.C.: Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics. Phys. Rev. E 82, 051903 (2010)

    Article  Google Scholar 

  20. Baxendale, P.H., Greenwood, P.E.: Sustained oscillations for density dependent Markov processes. J. Math. Biol. 63, 433–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  22. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  23. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  24. van der Pol, B., van der Mark, J.: The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Lond. Edinb. Dublin Philos. Mag. J. Sci. Ser. 7 6(38), 763–775 (1928)

    Google Scholar 

  25. Berglund, N., Landon, D.: Mixed-mode oscillations and interspike interval statistics in the stochastic Fitzhugh–Nagumo model. Nonlinearity 8, 2308–2335 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Lindner, B., Shimansky-Geier, L.: Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. Phys. Rev. E 60(6), 7270–7276 (1999)

    Article  Google Scholar 

  27. Swindale, N.: The development of topography in the visual cortex: a review of models. Netw. Comput. Neural Syst. 7, 161–247 (1996)

    Article  MATH  Google Scholar 

  28. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 5th edn. McGraw-Hill, New York (2012)

    Google Scholar 

  29. Roehrig, C., Rankin, C.H.: Dymods: a framework for modularizing dynamical neuronal structures. Neurocomputing 26–27, 831–836 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Greenwood, P.E., Ward, L.M. (2016). Single Neuron Models. In: Stochastic Neuron Models. Mathematical Biosciences Institute Lecture Series(), vol 1.5. Springer, Cham. https://doi.org/10.1007/978-3-319-26911-5_2

Download citation

Publish with us

Policies and ethics