Skip to main content

Noncommutative Geometry and the Physics of the LHC Era

  • Chapter
  • First Online:
Quantum Mathematical Physics
  • 2514 Accesses

Abstract

Noncommutative geometry allows to unify the basic building blocks of particle physics, Yang-Mills-Higgs theory and general relativity, into a single geometrical framework. The resulting effective theory constrains the couplings of the standard model and reduces the number of degrees of freedom. After an introduction of the basic ideas of Noncommutative geometry, I will present its predictions for the standard model and the few known models beyond the standard model based on a classification scheme for finite spectral triples. Most of these models, including the Standard Model, are now ruled out by LHC data. But interesting extensions of the standard model which agree with the presumed Higgs mass, predict new particles (Fermions, Scalars and Bosons) and await further experimental data.

Mathematics Subject Classification (2010). Primary 99Z99; Secondary 00A00

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://mediathek.uni-regensburg.de/playthis/547449bcafc7a3.85608488

  2. A. Connes, Noncommutative Geometry (Academic, San Diego, 1994)

    MATH  Google Scholar 

  3. A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives (American Mathematical Society, Providence, 2008)

    Google Scholar 

  4. M. Khalkhali, Basic Noncommutative Geometry. EMS Series of Lectures in Mathematics (European Mathematical Society, Zürich, 2010)

    Google Scholar 

  5. W. van Suijlekom, Noncommutative Geometry and Particle Physics (Springer, Dordrecht, 2015)

    Book  MATH  Google Scholar 

  6. T. Schücker, Forces from Connes’ geometry. Springer Lecture Notes in Physics Lectures ‘Topology and Geometry in Physics’. Lect. Notes Phys. 659, 285–350 (2005)

    Google Scholar 

  7. A. Connes, On the Spectral Characterization of Manifolds (2008). arXiv:0810.2088 [math.OA]

    Google Scholar 

  8. A. Connes, A unitary invariant in Riemannian geometry. Int. J. Geom. Methods Mod. Phys. 5, 1215–1242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Sanders, Commutative Spectral Triples and the Spectral Reconstruction Theorem, Master thesis, University of Nijmegen (2012)

    Google Scholar 

  10. F. Pfäffle, C. Stephan, On gravity, torsion and the spectral action principle. J. Funct. Anal. 262(4), 1529–1565 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Sitarz, A. Zajac, Spectral action for scalar perturbations of Dirac operators. Lett. Math. Phys. 98(3), 333–348 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Strohmaier, On noncommutative and pseudo-Riemannian geometry. J. Geom. Phys. 56(2), 175–195 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Paschke, A. Sitarz, Equivariant Lorentzian spectral triples (2006). arXiv preprint math-ph/0611029

    Google Scholar 

  14. F. Besnard, A noncommutative view on topology and order. J. Geom. Phys. 59(7), 861–875 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Franco, M. Eckstein, An algebraic formulation of causality for noncommutative geometry. Class. Quantum Gravity 30(13), 135007 (2013)

    Google Scholar 

  16. J. Barrett, A Lorentzian version of the non-commutative geometry of the standard model of particle physics. J. Math. Phys. 48, 012303 (2007)

    Article  MathSciNet  Google Scholar 

  17. A. Chamseddine, A. Connes, M. Marcolli, Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11, 991–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Stephan, Almost-commutative geometry, massive neutrinos and the orientability axiom in KO-dimension 6 (2006). hep-th/0610097

    Google Scholar 

  19. M. Paschke, A. Sitarz, Discrete spectral triples and their symmetries. J. Math. Phys. 39, 6191 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Krajewski, Classification of finite spectral triples. J. Geom. Phys. 28(1), 1–30 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Chamseddine, A. Connes, Why the standard model. J. Geom. Phys. 58(1), 38–47 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Chamseddine, A. Connes, W.D. van Suijlekom, Beyond the spectral standard model: emergence of Pati-Salam unification. J. High Energy Phys. 2013(11), 1–36 (2013)

    Article  Google Scholar 

  23. B. Iochum, T. Schücker, C. Stephan, On a classification of irreducible almost commutative geometries. J. Math. Phys. 45, 5003 (2004); J.-H. Jureit, C. Stephan, On a classification of irreducible almost commutative geometries, a second helping. J. Math. Phys. 46, 043512 (2005); T. Schücker, Krajewski Diagrams and Spin Lifts (2005). hep-th/0501181; J.-H. Jureit, T. Schücker, C. Stephan, On a classification of irreducible almost commutative geometries III. J. Math. Phys. 46, 072303 (2005); J.-H. Jureit, C. Stephan, On a classification of irreducible almost commutative geometries IV. J. Math. Phys. 49, 033502 (2008); J.-H. Jureit, C.A. Stephan, On a classification of irreducible almost-commutative geometries V. J. Math. Phys. 50, 072301 (2009)

    Google Scholar 

  24. C.A. Stephan, Almost-commutative geometries beyond the standard model. J. Phys. A 39, 9657 (2006); C.A. Stephan, Almost-commutative geometries beyond the standard model II: new colours. J. Phys. A. 40, 9941 (2007); R. Squellari, C.A. Stephan, Almost-commutative geometries beyond the standard model III: vector doublets. J. Phys. A. 40, 10685 (2007); C.A. Stephan, New scalar fields in noncommutative geometry. Phys. Rev. D79, 065013 (2009)

    Google Scholar 

  25. D. Fargion, M.Y. Khlopov, C.A. Stephan, Dark matter with invisible light from heavy double charged leptons of almost-commutative geometry?. Class. Quantum Gravity 23, 7305–7354 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. C.A. Stephan, A dark sector extension of the almost-commutative standard model. Int. J. Mod. Phys. 29(1), 1450005 (2014)

    Google Scholar 

  27. J.-H. Jureit, C.A. Stephan, Finding the standard model of particle physics, a combinatorial problem. Comput. Phys. Commun. 178, 230–247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Lazzarini, T. Schücker, A farewell to unimodularity. Phys. Lett. B 510, 277–284 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Chamseddine, A. Connes, The spectral action principle. Commun. Math. Phys. 186(3), 731–750 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Thumstädter, Parameteruntersuchungen an Dirac-Modellen. PhD- thesis, Universität Mannheim (2003); J. Tolksdorf, T. Thumstädter, Gauge theories of Dirac type. J. Math. Phys. 47, 082305 (2006); J. Tolksdorf, T. Thumstädter, Dirac type Gauge theories and the mass of the Higgs boson. J. Phys. A. 31, 9691 (2007)

    Google Scholar 

  31. M.A. Kurkov, F. Lizzi, M. Sakellariadou, A. Watcharangkool, Zeta spectral action (2014). arXiv:1412.4669 [hep-th]

    Google Scholar 

  32. A.A. Andrianov, M.A. Kurkov, F. Lizzi, Spectral action from anomalies, in Proceedings of the Corfu Summer Institute on Elementary Particles and Physics – Workshop on Non Commutative Field Theory and Gravity, Corfu, 8–12 Sept 2010

    Google Scholar 

  33. J. Zahn, Locally covariant chiral fermions and anomalies. Nucl. Phys. B 890, 1 (2015)

    Article  MathSciNet  Google Scholar 

  34. J. Tolksdorf, The Einstein-Hilbert-Yang-Mills-Higgs action and the Dirac-Yukawa operator. J. Math. Phys. 39, 2213–2241 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Tolksdorf, On the square of first order differential operators of Dirac type and the Einstein-Hilbert action. J. Geom. Phys. 57(10), 1999–2013 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Tolksdorf, The Einstein-Hilbert action with cosmological constant as a functional of generic form (2014). arXiv:1407.3733 [math-ph]

    Google Scholar 

  37. K.A. Olive et al., Particle Data Group, Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  38. M.E. Machacek, M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization. Nucl. Phys. B 222, 83 (1983); 2. Yukawa couplings. Nucl. Phys. B 236, 221 (1984); 3. Scalar quartic couplings. Nucl. Phys. B 249, 70 (1985)

    Google Scholar 

  39. C. Ford, D.R.T. Jones, P.W. Stephenson, M.B. Einhorn, The effective potential and the renormalisation group. Nucl. Phys. B 395, 17 (1993)

    Article  Google Scholar 

  40. ATLAS Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012)

    Google Scholar 

  41. A. Chamseddine, A. Connes, Resilience of the spectral standard model. J. High Energy Phys. 1209, 104 (2012)

    Article  MathSciNet  Google Scholar 

  42. A. Devastato, F. Lizzi, P. Martinetti, Grand symmetry, spectral action, and the Higgs mass (2014). arXiv:1304.0415 [hep-th]

    Google Scholar 

  43. L. Boyle, S. Farnsworth, Non-commutative geometry, non-associative geometry and the standard model of particle physics. New J. Phys. 16, 123027 (2014)

    Article  MathSciNet  Google Scholar 

  44. R. Wulkenhaar, The standard model within non-associative geometry. Phys. Lett. B 390, 119–127 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the organisers of the conference for the kind invitation and the possibility not only to give a talk but also to enjoy so many splendid talks from colleges and interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph A. Stephan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stephan, C.A. (2016). Noncommutative Geometry and the Physics of the LHC Era. In: Finster, F., Kleiner, J., Röken, C., Tolksdorf, J. (eds) Quantum Mathematical Physics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-26902-3_20

Download citation

Publish with us

Policies and ethics