Skip to main content

Is There a C-Function in 4D Quantum Einstein Gravity?

  • Chapter
  • First Online:
Quantum Mathematical Physics
  • 2496 Accesses

Abstract

We describe a functional renormalization group-based method to search for ‘C-like’ functions with properties similar to that in 2D conformal field theory. It exploits the mode counting properties of the effective average action and is particularly suited for theories including quantized gravity. The viability of the approach is demonstrated explicitly in a truncation of 4 dimensional Quantum Einstein Gravity, i.e. asymptotically safe metric gravity.

Mathematics Subject Classification (2010). Primary 81T06; Secondary 81Q06.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our conventions are as follows. We use dimensionless coordinates, [x μ] = 0. Then \([\text{d}s^{2}] = -2\) implies that all components of the various metrics have \([\hat{g}_{\mu \nu }] = [\bar{g}_{\mu \nu }] = [g_{\mu \nu }] = -2\), and likewise for the fluctuations: \([\hat{h}_{\mu \nu }] = [h_{\mu \nu }] = -2\).

  2. 2.

    We use the notation \(c^{[\varphi ]}\varphi \equiv \{ c^{[\varphi _{i}]}\varphi _{i}\}\) for the set in which each field is rescaled according to its individual canonical dimension.

  3. 3.

    Here one should also switch from k to the manifestly dimensionless ‘RG time’ \(t \equiv \ln (k) + \text{const}\), but we shall not indicate this notationally.

References

  1. A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory. JETP Lett. 43, 730 (1986); Renormalization group and perturbation theory near fixed points in two-dimensional field theory. Sov. J. Nucl. Phys. 46, 1090 (1987)

    Google Scholar 

  2. J.L. Cardy, Is there a c theorem in four-dimensions? Phys. Lett. B 215, 749 (1988)

    Article  MathSciNet  Google Scholar 

  3. H. Osborn, Derivation of a four-dimensional c theorem. Phys. Lett. B 222, 97 (1989); I. Jack, H. Osborn, Analogs for the c theorem for four-dimensional renormalizable field theories. Nucl. Phys. B 343, 647 (1990)

    Google Scholar 

  4. A.H. Castro Neto, E. Fradkin, The thermodynamics of quantum systems and generalizations of Zamolodchikov’s C theorem. Nucl. Phys. B 400, 525 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Klebanov, S. Pufu, B. Safdi, F-theorem without supersymmetry. JHEP 1110, 038 (2011)

    Article  MathSciNet  Google Scholar 

  6. A. Cappelli, D. Friedan, J.I. Latorre, C theorem and spectral representation. Nucl. Phys. B 352, 616 (1991)

    Article  MathSciNet  Google Scholar 

  7. G.M. Shore, Phys. Lett. B 253 (1991); The C(F) theorem. Phys. Lett. B 256, 407 (1991)

    Google Scholar 

  8. F. Bastianelli, Tests for c theorems in 4-D. Phys. Lett. B 369, 249 (1996)

    Article  MathSciNet  Google Scholar 

  9. D. Anselmi, D.Z. Freedman, M.T. Grisaru, A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories. Nucl. Phys. B 526, 543 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Z. Komargodski, A. Schwimmer, On renormalization group flows in four dimensions. JHEP 12, 099 (2011)

    Article  MathSciNet  Google Scholar 

  11. M. Luty, J. Polchinski, R. Rattazi, The a-theorem and the asymptotics of 4D quantum field theory. JHEP 01, 152 (2013)

    Article  Google Scholar 

  12. S. Weinberg, in General Relativity, an Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  13. M. Reuter, Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971 (1998) and hep-th/9605030

    Google Scholar 

  14. O. Lauscher, M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity Phys. Rev. D 65, 025013 (2002) and hep-th/0108040

    Google Scholar 

  15. O. Lauscher, M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative truncation Phys. Rev. D 66, 025026 (2002); Is quantum Einstein gravity nonperturbatively renormalizable? Class. Quantum Gravity 19, 482 (2002) and hep-th/0110021

    Google Scholar 

  16. M. Reuter, F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation. Phys. Rev. D 65, 065016 (2002)

    Article  MathSciNet  Google Scholar 

  17. For a review on QEG and Asymptotic Safety and a comprehensive list of references see M. Reuter, F. Saueressig, Quantum Einstein gravity. New J. Phys. 14, 055022 (2012)

    Google Scholar 

  18. M. Niedermaier, M. Reuter, The asymptotic safety scenario in quantum gravity. Living Rev. Relativ. 9, 5 (2006); M. Reuter, F. Saueressig, in Geometric and Topological Methods for Quantum Field Theory, ed. by H. Ocampo, S. Paycha, A. Vargas (Cambridge University Press, Cambridge, 2010) arXiv:0708.1317; R. Percacci, in Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter, ed. by D. Oriti (Cambridge University Press, Cambridge, 2009) arXiv:0709.3851.

    Google Scholar 

  19. O. Lauscher, M. Reuter, in Quantum Gravity, ed. by B. Fauser, J. Tolksdorf, E. Zeidler (Birkhäuser, Basel, 2007)

    Google Scholar 

  20. M. Reuter, C. Wetterich, Average action for the Higgs model with Abelian gauge symmetry. Nucl. Phys. B 391, 147 (1993); Running gauge coupling in three-dimensions and the electroweak phase transition. Nucl. Phys. B 408, 91 (1993); C. Wetterich, Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993); M. Reuter, C. Wetterich, Effective average action for gauge theories and exact evolution equations. Nucl. Phys. B 417, 181 (1994); Exact evolution equation for scalar electrodynamics. Nucl. Phys. B 427, 291 (1994)

    Google Scholar 

  21. A. Ashtekar, M. Reuter, C. Rovelli, From General Relativity to Quantum Gravity arXiv:1408.4336

    Google Scholar 

  22. M. Reuter, C. Wetterich, Gluon condensation in nonperturbative flow equations. Phys. Rev. D 56 7893 (1997)

    Article  Google Scholar 

  23. E. Manrique, M. Reuter, Bimetric truncations for quantum Einstein gravity and asymptotic safety. Ann. Phys. 325, 785 (2010). arXiv:0907.2617

    Google Scholar 

  24. M. Reuter, H. Weyer, Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance Phys. Rev. D 80, 025001 (2009) and arXiv:0804.1475

    Google Scholar 

  25. D. Becker, M. Reuter, En route to background independence: broken split-symmetry, and how to restore it with bi-metric average actions Ann. Phys. 350, 225 (2014). arXiv:1404.4537

    Google Scholar 

  26. D. Becker, M. Reuter, Propagating gravitons vs. ‘dark matter‘ in asymptotically safe quantum gravity. JHEP 1412, 025 (2014). arXiv:1407.5848

    Google Scholar 

  27. E. Manrique, M. Reuter, Bare action and regularized functional integral of asymptotically safe quantum gravity. Phys. Rev. D 79, 025008 (2009) and arXiv:0811.3888

    Google Scholar 

  28. D. Becker, M. Reuter, Towards a C-function in 4D quantum gravity. JHEP 1503, 065 (2015) and arXiv:1412.0468

    Google Scholar 

  29. E. Manrique, M. Reuter, F. Saueressig, Bimetric renormalization group flows in quantum Einstein gravity. Ann. Phys. 326, 463 (2011). arXiv:1006.0099

    Google Scholar 

  30. M. Reuter, H. Weyer, Quantum gravity at astrophysical distances? JCAP 0412 001 (2004). hep-th/0410119

    Google Scholar 

  31. T. Eguchi, P. Gilkey, A. Hanson, Gravitation, Gauge theories and differential geometry. Phys. Rep. 66 213 (1980) and references therein.

    Google Scholar 

Download references

Acknowledgements

M. R. would like to thank the organizers of Quantum Mathematical Physics for their hospitality at Regensburg and for a particularly stimulating conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Becker, D., Reuter, M. (2016). Is There a C-Function in 4D Quantum Einstein Gravity?. In: Finster, F., Kleiner, J., Röken, C., Tolksdorf, J. (eds) Quantum Mathematical Physics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-26902-3_2

Download citation

Publish with us

Policies and ethics