Skip to main content

Causal Fermion Systems: An Overview

  • Chapter
  • First Online:
Quantum Mathematical Physics
  • 2522 Accesses

Abstract

The theory of causal fermion systems is an approach to describe fundamental physics. We here introduce the mathematical framework and give an overview of the objectives and current results.

Mathematics Subject Classification (2010). 81-02, 81-06, 81V22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For clarity, we point out that our notion of causality does allow for nonlocal correlations and entanglement between regions with space-like separation. This will become clear in Sects. 1.4 and 5.3.

  2. 2.

    For completeness, we derive the inequality (\(\star\)): Since the operator \(\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\) is symmetric and has finite rank, there is a normalized vector \(u \in \mathcal{H}\) such that

    $$\displaystyle{ \Big(\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\Big)u = \pm \Big\|\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\Big\|\,u\:. }$$
    (17)

    Possibly by exchanging the roles of x and y we can arrange the plus sign. Then

    $$\displaystyle{\Big\|\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\Big\| =\big\langle u\,\big\vert \,\Big(\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\Big)u\big\rangle \leq \big\langle u\,\big\vert \,\Big(\sqrt{\vert y\vert } + \sqrt{\vert x\vert }\Big)u\big\rangle \:,}$$

    where in the last step we used that the operator \(\sqrt{\vert x\vert }\) is positive. Multiplying by \(\big\|\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\big\|\) and using (17) with the plus sign, we obtain

    $$\displaystyle\begin{array}{rcl} & & \Big\|\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\Big\|^{2} {}\\ & & \quad \leq \frac{1} {2}\bigg(\big\langle u\,\big\vert \,\Big(\sqrt{\vert y\vert } + \sqrt{\vert x\vert }\Big)\Big(\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\Big)u\big\rangle +\big\langle \Big (\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\Big)u\,\big\vert \,\Big(\sqrt{\vert y\vert } + \sqrt{\vert x\vert }\Big)u\big\rangle \bigg) {}\\ & & \quad = \frac{1} {2}\:\big\langle u\,\big\vert \,\left \{\Big(\sqrt{\vert y\vert } + \sqrt{\vert x\vert }\Big),\Big (\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\Big)\right \}u\big\rangle =\big\langle u\,\big\vert \,\big(\vert y\vert -\vert x\vert \big)\,u\big\rangle \leq \big\|\vert y\vert -\vert x\vert \big\|\:. {}\\ \end{array}$$

    We thus obtain the inequality \(\big\|\sqrt{\vert y\vert }-\sqrt{\vert x\vert }\big\|^{2} \leq \big\|\vert y\vert -\vert x\vert \big\|\). Applying this inequality with x replaced by x 2 and y replaced by y 2, it also follows that \(\big\|\vert y\vert -\vert x\vert \big\|^{2} \leq \big\| y^{2} - x^{2}\big\| \leq \big\| y - x\big\|\,\big\|y + x\big\|\). Combining these inequalities gives (\(\star\)).

  3. 3.

    For example, one may choose \(\mathcal{D}(P)\) as the set of all vectors \(\psi \in \mathcal{K}\) satisfying the conditions

    $$\displaystyle{\phi:=\int _{M}x\,\psi (x)\,d\rho (x)\: \in \:\mathcal{H}\qquad \mbox{ and}\qquad \vert \hspace{-0.85005pt}\vert \hspace{-0.85005pt}\vert \phi \vert \hspace{-0.85005pt}\vert \hspace{-0.85005pt}\vert <\infty \:.}$$

References

  1. Y. Bernard, F. Finster, On the structure of minimizers of causal variational principles in the non-compact and equivariant settings. Adv. Calc. Var. 7(1), 27–57 (2014). arXiv:1205.0403 [math-ph]

    Google Scholar 

  2. J. Bognár, Indefinite Inner Product Spaces (Springer, New York, 1974). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78

    Google Scholar 

  3. L. Bombelli, J. Lee, D. Meyer, R.D. Sorkin, Space-time as a causal set. Phys. Rev. Lett. 59(5), 521–524 (1987)

    Article  MathSciNet  Google Scholar 

  4. R. Brunetti, M. Dütsch, K. Fredenhagen, Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009). arXiv:0901.2038 [math-ph]

    Google Scholar 

  5. J. Dieudonné, Foundations of Modern Analysis. Enlarged and Corrected Printing, Pure and Applied Mathematics, vol. 10-I (Academic, New York/London, 1969)

    Google Scholar 

  6. F. Finster, The Continuum Limit of Causal Fermion Systems (in preparation). Book based on the preprints arXiv:0908.1542 [math-ph]; arXiv:1211.3351 [math-ph]; arXiv:1409.2568 [math-ph]

    Google Scholar 

  7. F. Finster, Definition of the dirac sea in the presence of external fields. Adv. Theor. Math. Phys. 2(5), 963–985 (1998). arXiv:hep-th/9705006

    Google Scholar 

  8. F. Finster, The Principle of the Fermionic Projector. AMS/IP Studies in Advanced Mathematics, vol. 35 (American Mathematical Society, Providence, 2006). hep-th/0001048; hep-th/0202059; hep-th/0210121

    Google Scholar 

  9. F. Finster, A variational principle in discrete space-time: existence of minimizers. Calc. Var. Partial Differ. Eqns. 29(4), 431–453 (2007). arXiv:math-ph/0503069

    Google Scholar 

  10. F. Finster, Causal variational principles on measure spaces. J. Reine Angew. Math. 646, 141–194 (2010). arXiv:0811.2666 [math-ph]

    Google Scholar 

  11. F. Finster, Entanglement and second quantization in the framework of the fermionic projector. J. Phys. A Math. Theor. 43, 395302 (2010). arXiv:0911.0076 [math-ph]

    Google Scholar 

  12. F. Finster, The Chiral Index of the Fermionic Signature Operator (2014). arXiv:1404.6625 [math-ph]

    Google Scholar 

  13. F. Finster, Perturbative quantum field theory in the framework of the fermionic projector. J. Math. Phys. 55(4), 042301 (2014). arXiv:1310.4121 [math-ph]

    Google Scholar 

  14. F. Finster, A Lorentzian quantum geometry. Adv. Theor. Math. Phys. 16(4), 1197–1290 (2012). arXiv:1107.2026 [math-ph]

    Google Scholar 

  15. F. Finster, On the initial value problem for causal variational principles. J. Reine Angew. Math. (2016, to appear). arXiv:1303.2964 [math-ph]

    Google Scholar 

  16. F. Finster, A. Grotz, The causal perturbation expansion revisited: rescaling the interacting Dirac sea. J. Math. Phys. 51, 072301 (2010). arXiv:0901.0334 [math-ph]

    Google Scholar 

  17. F. Finster, A. Grotz, D. Schiefeneder, Causal fermion systems: a quantum space-time emerging from an action principle, in Quantum Field Theory and Gravity, ed. by F. Finster, O. Müller, M. Nardmann, J. Tolksdorf, E. Zeidler (Birkhäuser, Basel, 2012), pp. 157–182. arXiv:1102.2585 [math-ph]

    Google Scholar 

  18. F. Finster, N. Kamran, Spinors on Singular Spaces and the Topology of Causal Fermion Systems (2014). arXiv:1403.7885 [math-ph]

    Google Scholar 

  19. F. Finster, J. Kleiner, The Jet Bundle Dynamics of Causal Fermion Systems (in preparation)

    Google Scholar 

  20. F. Finster, J. Kleiner, Noether-Like Theorems for Causal Variational Principles (2015). arXiv:1506.09076 [math-ph]

    Google Scholar 

  21. F. Finster, J. Kleiner, Causal Fermion Systems as a Candidate for a Unified Physical Theory (2015). arXiv:1502.03587 [math-ph]

    Google Scholar 

  22. F. Finster, O. Müller, Lorentzian Spectral Geometry for Globally Hyperbolic Surfaces (2014). arXiv:1411.3578 [math-ph]

    Google Scholar 

  23. F. Finster, S. Murro, C. Röken, The Fermionic Projector in a Time-Dependent External Potential: Mass Oscillation Property and Hadamard States. arXiv:1501.05522 [math-ph]

    Google Scholar 

  24. F. Finster, M. Reintjes, A Non-perturbative Construction of the Fermionic Projector on Globally Hyperbolic Manifolds II – Space-Times of Infinite Lifetime (2013). arXiv:1312.7209 [math-ph]

    Google Scholar 

  25. F. Finster, M. Reintjes, A non-perturbative construction of the fermionic projector on globally hyperbolic manifolds I – space-times of finite lifetime. Adv. Theor. Math. Phys. (2015, to appear). arXiv:1301.5420 [math-ph]

    Google Scholar 

  26. F. Finster, D. Schiefeneder, On the support of minimizers of causal variational principles. Arch. Ration. Mech. Anal. 210(2), 321–364 (2013). arXiv:1012.1589 [math-ph]

    Google Scholar 

  27. F. Finster, J. Tolksdorf, A microscopic derivation of quantum electrodynamics (in preparation)

    Google Scholar 

  28. F. Finster, J. Tolksdorf, Perturbative description of the fermionic projector: normalization, causality and Furry’s theorem. J. Math. Phys. 55(5), 052301 (2014). arXiv:1401.4353 [math-ph]

    Google Scholar 

  29. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, ed. by Ju. V. Geronimus, M. Ju. Ceuıtlin, 4th edn. (Academic, New York, 1965)

    Google Scholar 

  30. P.R. Halmos, Measure Theory (Springer, New York, 1974)

    MATH  Google Scholar 

  31. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu, Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. (Springer, Berlin, 2003)

    Book  Google Scholar 

  32. H. Langer, Spectral functions of definitizable operators in Krein spaces, in Functional Analysis 1981, Dubrovnik. Lecture Notes in Mathematics, vol. 948 (Springer, Berlin, 1982), pp. 1–46

    Google Scholar 

  33. P.D. Lax, Functional Analysis. Pure and Applied Mathematics (Wiley-Interscience, New York, 2002)

    MATH  Google Scholar 

  34. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), Digital Library of Mathematical Functions (National Institute of Standards and Technology, Washington, DC, 2010). Release date 01/07/2011. From http://dlmf.nist.gov/

  35. W. Rudin, Principles of Mathematical Analysis, International Series in Pure and Applied Mathematics, 3rd edn. (McGraw-Hill Book, New York/Auckland/Düsseldorf, 1976)

    Google Scholar 

Download references

Acknowledgements

I would like to thank the referee for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Finster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Finster, F. (2016). Causal Fermion Systems: An Overview. In: Finster, F., Kleiner, J., Röken, C., Tolksdorf, J. (eds) Quantum Mathematical Physics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-26902-3_15

Download citation

Publish with us

Policies and ethics