Skip to main content

Kinematical Foundations of Loop Quantum Cosmology

  • Chapter
  • First Online:
Quantum Mathematical Physics

Abstract

First, we review the C -algebraic foundations of loop quantization, in particular, the construction of quantum configuration spaces and the implementation of symmetries. Then, we apply these results to loop quantum gravity, focusing on the space of generalized connections and on measures thereon. Finally, we study the realm of homogeneous isotropic loop quantum cosmology: once viewed as the loop quantization of classical cosmology, once seen as the symmetric sector of loop quantum gravity. It will turn out that both theories differ, i.e., quantization and symmetry reduction do not commute. Moreover, we will present a uniqueness result for kinematical measures. These last two key results have originally been due to Hanusch; here, we give drastically simplified and direct proofs.

Mathematics Subject Classification (2010). Primary 46L60; Secondary 58D19, 46L65, 81T05, 83C45, 83F05

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One may assume w.l.o.g. that the action is effective although we will never use this.

  2. 2.

    Parts of Proposition 1 originate in [47].

  3. 3.

    The kernel of \(\mathfrak{A}\) is defined by \(\bigcap _{a\in \mathfrak{A}}a^{-1}(0)\). In particular, each unital \(\mathfrak{A}\) has empty kernel. Throughout the whole article, any \(\mathfrak{A}\) will have empty kernel – or we will assume that.

  4. 4.

    If the natural mappings ι i are injective, this just means that \(\overline{\sigma }\) extends \(\sigma\).

  5. 5.

    To explain the term “restriction algebra”, assume that \(\sigma\) is injective, whence \(\mathcal{X}_{1}\) can be considered as a subset of \(\mathcal{X}_{2}\). Then \(\sigma ^{{\ast}}\mathfrak{A}_{2}\) consists just of the restrictions of the functions in \(\mathfrak{A}_{2} \subseteq \ell^{\infty }(\mathcal{X}_{2})\) to the domain \(\mathcal{X}_{1}\). In order to avoid conflicts with the different notion of pull-back C -algebras, we will use the notion “restriction algebra” also in the case where \(\sigma\) is not injective.

  6. 6.

    Note that later we will refrain from writing \(\sigma\) in the case of subspaces of invariant elements.

  7. 7.

    Alternatively, one can also consider the space of all Riemannian 3-metrics modulo diffeomorphisms. This leads to the so-called superspace. However, its mathematical structure is rather complicated [36].

  8. 8.

    There are spin structures, hence spin bundles, as \(\Sigma \) is orientable [43].

  9. 9.

    Note that we do not require ν to even be a local section in the bundle sense. In fact, ν need not be continuous; this is referred to by noting “set-theoretic” [26].

  10. 10.

    We assume to have fixedly chosen G as a Lie subgroup of some U(n).

  11. 11.

    For this, one has to identify paths that coincide up to their parametrization.

  12. 12.

    The results of Sects. 4.7 and 4.8 can, in principle, be found in the very voluminous and interesting thesis [38] by Hanusch. Here, however, we have drastically simplified and streamlined notations, statement presentations and proofs.

  13. 13.

    In order not to overload the notation, we refrain from writing “paths modulo reparametrization”, here and in the following. Indeed, it should be clear that and how the action of S transfers to these equivalence classes.

  14. 14.

    This way, rotation in direction n with length t equals rotation in direction − n with length − t. The homomorphy property of b together with \(T_{-n} = T_{n}^{-1}\) shows that \(\overline{A}_{\mathbf{b}}(\gamma )\) is well defined.

References

  1. J. Aastrup, J.M. Grimstrup, R. Nest, On spectral triples in quantum gravity I. Class. Quantum Gravity 26, 065011 (2009)

    Article  MathSciNet  Google Scholar 

  2. A. Ashtekar, New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244–2247 (1986)

    Article  MathSciNet  Google Scholar 

  3. A. Ashtekar, New Hamiltonian formulation of general relativity. Phys. Rev. D36, 1587–1602 (1987)

    MathSciNet  Google Scholar 

  4. A. Ashtekar, M. Campiglia, On the uniqueness of Kinematics of loop quantum cosmology. Class. Quantum Gravity 29, 242001 (2012)

    Article  MathSciNet  Google Scholar 

  5. A. Ashtekar, C.J. Isham, Representations of the holonomy algebras of gravity and nonabelian gauge theories. Class. Quantum Gravity 9, 1433–1468 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Ashtekar, J. Lewandowski, in Knots and Quantum Gravity (Oxford University Press, Oxford, 1994), pp. 21–61

    Google Scholar 

  7. A. Ashtekar, J. Lewandowski, Differential geometry on the space of connections via graphs and projective limits. J. Geom. Phys. 17, 191–230 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Ashtekar, J. Lewandowski, Projective techniques and functional integration for gauge theories. J. Math. Phys. 36, 2170–2191 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Ashtekar, J. Lewandowski, Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53–R152 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Ashtekar, J. Lewandowski, D. Marolf, J.M. Mourão, Th. Thiemann, Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 36, 6456–6493 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Ashtekar, M. Bojowald, J. Lewandowski, Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 9, 233–268 (2003)

    Article  MathSciNet  Google Scholar 

  12. A. Ashtekar, T. Pawlowski, P. Singh, Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006)

    Article  MathSciNet  Google Scholar 

  13. J.C. Baez, S. Sawin, Functional integration on spaces of connections. J. Funct. Anal. 150, 1–26 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. J.C. Baez, S. Sawin, Diffeomorphism-invariant spin network states. J. Funct. Anal. 158, 253–266 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.F. Barbero, Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D51, 5507–5510 (1995)

    Google Scholar 

  16. A.N. Bernal, M. Sánchez, On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003)

    Article  MATH  Google Scholar 

  17. A.N. Bernal, M. Sánchez, Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Bojowald, Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227–5230 (2001)

    Article  MathSciNet  Google Scholar 

  19. M. Bojowald, Isotropic loop quantum cosmology. Class. Quantum Gravity 19, 2717–2742 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Bojowald, H.A. Kastrup, Quantum symmetry reduction for diffeomorphism invariant theories of connections. Class. Quantum Gravity 17, 3009–3043 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Brunnemann, Ch. Fleischhack, On the configuration spaces of homogeneous loop quantum cosmology and loop quantum gravity. Math. Phys. Anal. Geom. 15, 299–315 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Engle, Piecewise linear loop quantum gravity. Class. Quantum Gravity 27, 035003 (2010)

    Article  MathSciNet  Google Scholar 

  23. Ch. Fleischhack, Loop quantization and symmetry: configuration spaces. e-print: 1010.0449 [math-ph]

    Google Scholar 

  24. Ch. Fleischhack, Mathematische und physikalische Aspekte verallgemeinerter Eichfeldtheorien im Ashtekarprogramm (Dissertation), Universität Leipzig (2001)

    Google Scholar 

  25. Ch. Fleischhack, Hyphs and the Ashtekar-Lewandowski Measure. J. Geom. Phys. 45 231–251 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ch. Fleischhack, Regular connections among generalized connections. J. Geom. Phys. 47, 469–483 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ch. Fleischhack, Parallel transports in webs. Math. Nachr. 263–264, 83–102 (2004)

    Article  MathSciNet  Google Scholar 

  28. Ch. Fleischhack, Proof of a conjecture by Lewandowski and Thiemann. Commun. Math. Phys. 249 331–352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ch. Fleischhack, Representations of the Weyl algebra in quantum geometry. Commun. Math. Phys. 285, 67–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ch. Fleischhack, On Ashtekar’s formulation of general relativity. J. Phys. (Conf. Ser.) 360, 012022 (2012)

    Google Scholar 

  31. Ch. Fleischhack, Spectra of Abelian C -subalgebra sums. e-print: 1409.5273 [math.FA]

    Google Scholar 

  32. Ch. Fleischhack, Symmetries of analytic paths. e-print: 1503.06341 [math-ph]

    Google Scholar 

  33. Ch. Fleischhack, Ph. Levermann, Ashtekar variables: structures in bundles. e-print: 1112.1262 [math-ph]

    Google Scholar 

  34. Y. Fourès-Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Giesel, Th. Thiemann, Algebraic quantum gravity (AQG) I. Conceptual setup. Class. Quantum Gravity 24, 2465–2498 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Giulini, What is the geometry of superspace?. Phys. Rev. D51, 5630–5635 (1995)

    MathSciNet  Google Scholar 

  37. M. Hanusch, A characterization of invariant connection. SIGMA 10, 025 (2014)

    MathSciNet  Google Scholar 

  38. M. Hanusch, Invariant connections and symmetry reduction in loop quantum gravity (Dissertation), Universität Paderborn (2014)

    Google Scholar 

  39. M. Hanusch, Invariant connections in loop quantum gravity, e-print: 1307.5303 [math-ph]

    Google Scholar 

  40. R.M. Hardt, Stratification of real analytic mappings and images. Invent. Math. 28, 193–208 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Harnad, S. Shnider, L. Vinet, Group actions on principal bundles and invariance conditions for Gauge fields. J. Math. Phys. 21, 2719–2724 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Immirzi, Real and complex connections for canonical gravity. Class. Quantum Gravity 14, L177–L181 (1997)

    Article  MathSciNet  Google Scholar 

  43. R.C. Kirby, The Topology of 4-Manifolds. Lecture Notes in Mathematics, vol. 1374 (Springer, Berlin/Heidelberg, 1989)

    Google Scholar 

  44. J. Lewandowski, A. Okołów, H. Sahlmann, Th. Thiemann, Uniqueness of diffeomorphism invariant states on holonomy-flux algebras. Commun. Math. Phys. 267, 703–733 (2006)

    Article  MATH  Google Scholar 

  45. S. Łojasiewicz, Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa 18, 449–474 (1964)

    MathSciNet  MATH  Google Scholar 

  46. G.J. Murphy, C -Algebras and Operator Theory (Academic, San Diego, 1990)

    Google Scholar 

  47. A.D. Rendall, Comment on a paper of Ashtekar and Isham. Class. Quantum Gravity 10, 605–608 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Ringström, The Cauchy Problem in General Relativity. ESI Lectures in Mathematics and Physics (European Mathematical Society, Zürich, 2009)

    Google Scholar 

  49. J. Samuel, Is Barbero’s Hamiltonian formulation a Gauge theory? Class. Quantum Gravity 17, L141–L148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. N. Straumann, General Relativity: With Applications to Astrophysics (Springer, Berlin/New York, 2004)

    Book  Google Scholar 

  51. Th. Thiemann, Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity. Phys. Lett. B380, 257–264 (1996)

    Article  MathSciNet  Google Scholar 

  52. Th. Thiemann, Quantum spin dynamics (QSD). Class. Quantum Gravity 15, 839–873 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Th. Thiemann, Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  54. R.M. Wald, General Relativity (Chicago University Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  55. H. Wang, On invariant connections over a principal fibre bundle. Nagoya Math. J. 13, 1–19 (1958)

    MathSciNet  MATH  Google Scholar 

  56. J.A. Zapata, A Combinatorial approach to diffeomorphism invariant quantum gauge theories. J. Math. Phys. 38, 5663–5681 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the organizers of the Regensburg conference on quantum mathematical physics for the kind invitation. The author is also very grateful to Maximilian Hanusch for numerous discussions and helpful comments on a draft version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Fleischhack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fleischhack, C. (2016). Kinematical Foundations of Loop Quantum Cosmology. In: Finster, F., Kleiner, J., Röken, C., Tolksdorf, J. (eds) Quantum Mathematical Physics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-26902-3_11

Download citation

Publish with us

Policies and ethics