Outlook of Aptamer-Based Smart Materials for Industrial Applications

  • Emily Mastronardi
  • Maria C. DeRosaEmail author


“Smart” materials are advanced materials that are able to change their physical or chemical properties in response to external stimuli in their environment, and they are finding uses in industry such as in drug delivery, for example. By adding a molecular recognition probe to the material that is specific to a target of interest, these smart materials can become responsive to specific molecules or biomolecules. Aptamers are single-stranded oligonucleotides that fold into complex structures and bind their targets with high affinity and selectivity. Due to their stability and facile method of synthesis and labeling, DNA aptamers are well suited to incorporation in smart materials. The addition of aptamers into these advanced materials allows the material to gain functionality from target recognition, altering the properties of the material upon target binding. Aptamer-based smart materials bring together aptamer technology with materials science, producing multifunctional, advanced materials with tunable properties that could be applied to many facets of industry. This chapter will discuss current literature and patents pertaining to aptamer-based smart materials and discuss the applicability of these materials for industrial applications.


Aptamers Biosensors Molecular recognition Targeted delivery 


  1. 1.
    Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161–1171. doi: 10.1016/j CrossRefGoogle Scholar
  2. 2.
    Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640. doi: 10.1016/j.matdes.2011.04.065 CrossRefGoogle Scholar
  3. 3.
    Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23:664–668. doi: 10.1002/adma.201003398 CrossRefGoogle Scholar
  4. 4.
    Pardo R, Zayat M, Levy D (2011) Photochromic organic-inorganic hybrid materials. Chem Soc Rev 40:672–687. doi: 10.1039/c0cs00065e CrossRefGoogle Scholar
  5. 5.
    Seeboth A, Ruhmann R, Mühling O (2010) Thermotropic and thermochromic polymer based materials for adaptive solar control. Materials (Basel) 3:5143–5168. doi: 10.3390/ma3125143 CrossRefGoogle Scholar
  6. 6.
    Mortimer RJ (2011) Electrochromic materials. Annu Rev Mater Sci 41:241–268. doi: 10.1146/ CrossRefGoogle Scholar
  7. 7.
    Scherer MRJ, Steiner U (2013) Efficient electrochromic devices made from 3D nanotubular gyroid networks. Nano Lett 13:3005–3010. doi: 10.1021/nl303833h CrossRefGoogle Scholar
  8. 8.
    Seeboth A, Lötzsch D, Ruhmann R, Muehling O (2014) Thermochromic polymers–function by design. Chem Rev 114:3037–3068. doi: 10.1021/cr400462e CrossRefGoogle Scholar
  9. 9.
    Kline WM, Lorenzini G, Sotzing GA (2014) A review of organic electrochromic fabric devices. Coloration Technol 130(2):73–80. doi: 10.1111/cote.12079 CrossRefGoogle Scholar
  10. 10.
    Zhang J, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25:378–399. doi: 10.1002/adma.201201521 CrossRefGoogle Scholar
  11. 11.
    Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21. doi: 10.1088/0964-1726/16/3/R01 CrossRefGoogle Scholar
  12. 12.
    Pan C, Li Z, Guo W, Zhu J, Wang ZL (2011) Fiber-based hybrid nanogenerators for/as self-powered systems in biological liquid. Angew Chem Int Ed 50:11192–11196. doi: 10.1002/anie.201104197 CrossRefGoogle Scholar
  13. 13.
    Chi Z, Xu Q (2014) Recent advances in the control of piezoelectric actuators. Int J Adv Robot Syst 11:1–11. doi: 10.5772/59099 CrossRefGoogle Scholar
  14. 14.
    The Institute of Materials MAM Materials Foresight – Smart materials for the 21st century ( Accessed March 2015.Google Scholar
  15. 15.
    Ruigrok VJB, Levisson M, Eppink MHM, Smidt H, van der Oost J (2011) Alternative affinity tools: more attractive than antibodies? Biochem J 436:1–13. doi: 10.1042/BJ20101860 CrossRefGoogle Scholar
  16. 16.
    Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452. doi: 10.1021/ac201057w CrossRefGoogle Scholar
  17. 17.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  18. 18.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. doi: 10.1038/346183a0 CrossRefGoogle Scholar
  19. 19.
    Cibiel A, Dupont DM, Ducongé F (2011) Methods to identify aptamers against cell surface biomarkers. Pharmaceuticals 4:1216–1235. doi: 10.3390/ph4091216 CrossRefGoogle Scholar
  20. 20.
    Duan N, Wu S, Chen X, Huang Y, Xia Y, Ma X, Wang Z (2013) Selection and characterization of aptamers against salmonella typhimurium using whole-bacterium systemic evolution of Ligands by exponential enrichment (SELEX). J Agric Food Chem 61:3229–3234. doi: 10.1021/jf400767d CrossRefGoogle Scholar
  21. 21.
    Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou S (2015) Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics. doi: 10.7150/thno.10202 Google Scholar
  22. 22.
    Yoshida R, Okano T (2010) Stimuli-responsive hydrogels and their application to functional materials. In: Biomedical applications of hydrogels handbook. pp 19–43. doi: 10.1007/978-1-4419-5919-5
  23. 23.
    Caló E, Khutoryanskiy VV (2014) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. doi: 10.1016/j.eurpolymj.2014.11.024 CrossRefGoogle Scholar
  24. 24.
    Yang H, Liu H, Kang H, Tan W (2008) Engineering target-responsive hydrogels based on aptamer-target interactions. J Am Chem Soc 130:6320–6321. doi: 10.1021/ja801339w CrossRefGoogle Scholar
  25. 25.
    Galli C, Macaluso GM (2014) Biomedical device implantable in bone and/or cartilaginous tissue, and corresponding method to manufacture said biomedical deviceGoogle Scholar
  26. 26.
    DeLouise L, Bonanno L. Hybrid target analyte responsive polymer sensor with optical amplificationGoogle Scholar
  27. 27.
    Wang Y, Soontornworajit B, Chen N (2013) Affinity hydrogels for controlled protein releaseGoogle Scholar
  28. 28.
    Hyde RA, Ishikawa MY, Jung EKY, Langer R, Leuthardt EC, Myhrvold NP, Sweeney EA, Wood LL Jr (2013) Device, system, and method for controllably reducing inflammatory mediators in a subjectGoogle Scholar
  29. 29.
    (2013) Colloidal crystal gel label-free visual detection method with aptamer as identification unitGoogle Scholar
  30. 30.
    Wang Y, Zhang Z, Chen N, Li S (2013) Affinity-based materials for the non-destructive separation and recovery of cellsGoogle Scholar
  31. 31.
    Zion TC, Lancaster TM (2013) Polynucleotide aptamer-based cross-linked materials and uses thereofGoogle Scholar
  32. 32.
    Aizenberg J, He X, Aizenberg M (2013) Self-regulating chemo-mechano-chemical systemsGoogle Scholar
  33. 33.
    Luo D, Roh YH (2012) Photo-crosslinked nucleic acid hydrogelsGoogle Scholar
  34. 34.
    Benkoski JJ, Mason AF, Baird LM, Sample JL (2010) Triggered drug release via physiologically responsive polymersGoogle Scholar
  35. 35.
    Strano MS, Barone PW (2010) Systems and methods using photoluminescent nanostructure based hydrogelsGoogle Scholar
  36. 36.
    Tan W, Huanghao Y, Liu H (2009) Target-responsive hydrogelsGoogle Scholar
  37. 37.
    Daunert S, Deo SK, Ehrick JD, Browning TW, Bachas LG (2009) Apparatus comprising a protein integrated hydrogel polymer which undergoes conformational transition in the presence of a target moleculeGoogle Scholar
  38. 38.
    Mark B, Siddarth V, Jacek W (2008) Drug delivery system and methodGoogle Scholar
  39. 39.
    Madou M, Bachas L, Daunert S (2002) Microarray for use in the detection of preferential particles in solutionGoogle Scholar
  40. 40.
    Wei B, Cheng I, Luo KQ, Mi Y (2008) Capture and release of protein by a reversible DNA-induced sol-gel transition system. Angew Chem Int Ed 47:331–333. doi: 10.1002/anie.200704143 CrossRefGoogle Scholar
  41. 41.
    El-Hamed F, Dave N, Liu J (2011) Stimuli-responsive releasing of gold nanoparticles and liposomes from aptamer-functionalized hydrogels. Nanotechnology 22:494011. doi: 10.1088/0957-4484/22/49/494011 CrossRefGoogle Scholar
  42. 42.
    Soontornworajit B, Zhou J, Wang Y (2010) A hybrid particle–hydrogel composite for oligonucleotide-mediated pulsatile protein release. Soft Matter 6:4255. doi: 10.1039/c0sm00206b CrossRefGoogle Scholar
  43. 43.
    Battig MR, Soontornworajit B, Wang Y (2012) Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J Am Chem Soc 134:12410–12413. doi: 10.1021/ja305238a CrossRefGoogle Scholar
  44. 44.
    He X, Wei B, Mi Y (2010) Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation. Chem Commun (Camb) 46:6308–6310. doi: 10.1039/c0cc01392g CrossRefGoogle Scholar
  45. 45.
    Wu C, Wan S, Hou W, Zhang L, Xu J, Cui C, Wang Y, Hu J, Tan W (2015) A survey of advancements in nucleic acid-based logic gates and computing for applications in biotechnology and biomedicine. Chem Commun 51:3723–3734. doi: 10.1039/C4CC10047F CrossRefGoogle Scholar
  46. 46.
    Yoshida W, Yokobayashi Y (2007) Photonic Boolean logic gates based on DNA aptamers. Chem Commun (Camb) 9:195–197. doi: 10.1039/b613201d CrossRefGoogle Scholar
  47. 47.
    Liu Y, Ren J, Qin Y, Li J, Liu J, Wang E (2012) An aptamer-based keypad lock system. Chem Commun 48:802. doi: 10.1039/c1cc15979h CrossRefGoogle Scholar
  48. 48.
    Xu X, Zhang J, Yang F, Yang X (2011) Colorimetric logic gates for small molecules using split/integrated aptamers and unmodified gold nanoparticles. Chem Commun (Camb) 47:9435–9437. doi: 10.1039/c1cc13459k CrossRefGoogle Scholar
  49. 49.
    You M, Zhu G, Chen T, Donovan MJ, Tan W (2015) Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapyGoogle Scholar
  50. 50.
    Zhu C-L, Song X-Y, Zhou W-H, Yang H-H, Wen Y-H, Wang X-R (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J Mater Chem 19:7765. doi: 10.1039/b907978e CrossRefGoogle Scholar
  51. 51.
    Wang J, Lu J, Su S, Gao J, Huang Q, Wang L, Huang W, Zuo X (2015) Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. Biosens Bioelectron 65:171–175. doi: 10.1016/j.bios.2014.10.031 CrossRefGoogle Scholar
  52. 52.
    (2014) Electroluminescence logic gate adopting adenosine monophosphate and adenosine deaminase as excimersGoogle Scholar
  53. 53.
    Seelig G, Lutz B (2013) Systems and methods for detecting biomarkers of interestGoogle Scholar
  54. 54.
    Stojanovic MN (2003) Oligonucleotide-based logic gates and molecular networksGoogle Scholar
  55. 55.
    Sen D, Fahlman RP (2011) DNA conformational switches as sensitive electronic sensors of analytesGoogle Scholar
  56. 56.
    Yin B-C, Ye B-C, Wang H, Zhu Z, Tan W (2012) Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem Commun 48:1248. doi: 10.1039/c1cc15639j CrossRefGoogle Scholar
  57. 57.
    Jiang Y, Liu N, Guo W, Xia F, Jiang L (2012) Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J Am Chem Soc 134:15395–15401. doi: 10.1021/ja3053333 CrossRefGoogle Scholar
  58. 58.
    Abelow AE, Schepelina O, White RJ, Vallée-Bélisle A, Plaxco KW, Zharov I (2010) Biomimetic glass nanopores employing aptamer gates responsive to a small molecule. Chem Commun (Camb) 46:7984–7986. doi: 10.1039/c0cc02649b CrossRefGoogle Scholar
  59. 59.
    Schäfer T, Özalp VC (2015) DNA-aptamer gating membranes. Chem Commun. doi: 10.1039/C4CC09660F Google Scholar
  60. 60.
    Zhu X, Zhang B, Ye Z, Shi H, Shen Y, Li G (2015) An ATP-responsive smart gate fabricated with a graphene oxide–aptamer–nanochannel architecture. Chem Commun 51:640–643. doi: 10.1039/C4CC07990F CrossRefGoogle Scholar
  61. 61.
    Wang R, Xu L, Li Y (2015) Bio-nanogate controlled enzymatic reaction for virus sensing. Biosens Bioelectron 67:400–407. doi: 10.1016/j.bios.2014.08.071 CrossRefGoogle Scholar
  62. 62.
    Zhu CL, Lu CH, Song XY, Yang HH, Wang XR (2011) Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc 133:1278–1281. doi: 10.1021/ja110094g CrossRefGoogle Scholar
  63. 63.
    Ozalp VC, Eyidogan F, Oktem HA (2011) Aptamer-gated nanoparticles for smart drug delivery. Pharmaceuticals 4:1137–1157. doi: 10.3390/ph4081137 CrossRefGoogle Scholar
  64. 64.
    Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834CrossRefGoogle Scholar
  65. 65.
    Bachelet I, Church G, Douglas S (2012) DNA origami devicesGoogle Scholar
  66. 66.
    Amir Y, Ben-Ishay E, Levner D, Ittah S, Abu-Horowitz A, Bachelet I (2014) Universal computing by DNA origami robots in a living animal. Nat Nanotechnoli 9:353–357. doi: 10.1038/nnano.2014.58 CrossRefGoogle Scholar
  67. 67.
    Izquierdo A, Ono SS, Voegel JC, Schaaf P, Decher G (2005) Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir 21:7558–7567. doi: 10.1021/la047407s CrossRefGoogle Scholar
  68. 68.
    Jansen JA, Nolte RJM, Sommerdijk NAJ, Walboomers XF, Van DBJJ, Vos MR-J (2006) DNA-based coatings for implantsGoogle Scholar
  69. 69.
    Borbely J, Bodnar M, Hajdu I, Hartman JF, Keresztessy Z, Nagy L, Vamosii G (2009) Polymeric nanoparticles by ion-ion interactionsGoogle Scholar
  70. 70.
    Winterton LC, Vogt J, Lally JM, Stockinger F (1999) Coating of Polymers.Google Scholar
  71. 71.
    Claus RO, Liu Y (2001) Transparent abrasion-resistant coatings, magnetic coatings, and UV absorbing coatings on solid substratesGoogle Scholar
  72. 72.
    Sultan Y, Walsh R, Monreal C, DeRosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromolecules 10:1149–1154. doi: 10.1021/bm8014126 CrossRefGoogle Scholar
  73. 73.
    Sultan Y, DeRosa MC (2011) Target binding influences permeability in aptamer-polyelectrolyte microcapsules. Small 7:1219–1226. doi: 10.1002/smll.201001186 CrossRefGoogle Scholar
  74. 74.
    Chen L, Zeng X, Ferhan AR, Chi Y, Kim D-H, Chen G (2015) Signal-on electrochemiluminescent aptasensors based on target controlled permeable films. Chem Commun 51:1035–1038. doi: 10.1039/C4CC07699K CrossRefGoogle Scholar
  75. 75.
    Zhang X, Chabot D, Sultan Y, Monreal C, Derosa MC (2013) Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules. ACS Appl Mater Interfaces 5:5500–5507. doi: 10.1021/am400668q CrossRefGoogle Scholar
  76. 76.
    Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11:499–507. doi: 10.1038/nmeth.2918 CrossRefGoogle Scholar
  77. 77.
    Foster A, DeRosa MC (2014) Development of a biocompatible layer-by-layer film system using aptamer technology for smart material applications. Polymers (Basel) 6:1631–1654. doi: 10.3390/polym6051631 CrossRefGoogle Scholar
  78. 78.
    Brüggemann D (2013) Nanoporous aluminium oxide membranes as cell interfaces. J Nanomater. doi: 10.1155/2013/460870 Google Scholar
  79. 79.
    Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy JL (2014) A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35:1816–1832. doi: 10.1016/j.biomaterials.2013.11.021 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryCarleton UniversityOttawaCanada

Personalised recommendations