Smart Textile Transducers: Design, Techniques, and Applications

  • Lina M. CastanoEmail author
  • Alison B. FlatauEmail author


Smart textiles are emerging technologies with numerous applications and technical advantages. These are textiles which have undergone alteration in order to be utilized as sensors, actuators, and/or other types of transducers. Sensing and actuation features can be imparted to fabric substrates by applying intelligent coatings such that they will be sensitive and/or reactive to more than one type of stimulus, (e.g., chemical or physical). Smart coating polymers applied to fabrics include inherently conductive, semiconductive, and particle-doped polymers. These coatings can be piezoresistive, magnetoresistive, piezoelectric, photochromic, and sensitive to chemicals, gases, changes in humidity, and temperature, among others. In this chapter, an overview of the smart textile transducer elements, textile platforms, application techniques, and construction methods will be presented. Multiple applications have been inspired by the lightweight and compliant characteristics of smart textiles: industrial (i.e., uniforms), aerospace (i.e., space suit liners), military (i.e., soldier gear), and medical (i.e., patient garments), among others. These applications will define the current development of smart textile technologies and will be further discussed in this chapter. Furthermore, design principles and challenges associated to coating technologies as applied to textiles including surface treatment for strong adhesion, durability, and environmental/mechanical constraints are introduced. Future trends will arise from the integration of novel technologies into portable platforms with intelligent polymer coatings, alongside development of wearable technologies for fast input/data processing and streamlined user interfaces.


Textile transducers Polymer transducers Smart textiles E-textiles 


  1. 1.
    Castano LM, Flatau AB (2014) IOP Smart Mater Structures 23:053001CrossRefGoogle Scholar
  2. 2.
    Schwartz P (2008) Structure and mechanics of textile fibre assemblies. Elsevier, Boca Raton, FLCrossRefGoogle Scholar
  3. 3.
    Shijian L, Van Ooij WJ (2002) J Adhes Sci Technol 16:1715–1735CrossRefGoogle Scholar
  4. 4.
    Tracton A (2006) Coatings technology handbook, 3rd edn. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  5. 5.
    Niu C et al (1997) Appl Phys Lett 70:1480–1482CrossRefGoogle Scholar
  6. 6.
    Célino A, Fréour S, Jacquemin F, Casari P (2013) Front Chem 1:43Google Scholar
  7. 7.
    Thermochromic sensing fibers, Commonwealth Scientific and Industrial Research Organization (CSIRO). Available from Accessed 20 Dec 2015
  8. 8.
    Zysset C et al (2013) Opt Express 21:3213–3224CrossRefGoogle Scholar
  9. 9.
    Castano LM (2010) Smart fabric sensors for foot motion monitoring. Thesis, University of Maryland, College ParkGoogle Scholar
  10. 10.
    Gao Y, Zheng Y, Diao S, Toh WD, Ang CW, Je M, Heng CH (2011) IEEE Trans Biomed Eng 58:768–772CrossRefGoogle Scholar
  11. 11.
    Adanur S (1995) Wellington sears handbook of industrial textiles. Lancaster, PhiladelphiaGoogle Scholar
  12. 12.
    Chen Z, Cottrell B, Wong W (2002) Eng Fract Mech 69:597–603CrossRefGoogle Scholar
  13. 13.
    Jinming H, Liu S (2010) Macromolecules 43:8315–8330CrossRefGoogle Scholar
  14. 14.
    Meyer J, Arnrich B, Schumm J, Troster G (2010) IEEE Sens J 10:1391–1398CrossRefGoogle Scholar
  15. 15.
    Post ER, Orth M, Russo PR, Gershenfeld N (2000) IBM Syst J 39:840–860CrossRefGoogle Scholar
  16. 16.
    Sergio M, Manaresi N, Campi F, Canegallo R, Tartagni M, Guerrieri R (2003) IEEE J Solid-State Circuits 38:966–975CrossRefGoogle Scholar
  17. 17.
    Hui Z, Ming TX, Xi YT, Sheng LX (2006) Pressure sensing fabric. Materials Research Society, Symposium Proceedings, Smart Nanotextiles, 920:113–119Google Scholar
  18. 18.
    Shimojo M, Namiki A, Ishikawa M, Makino R, Mabuchi K (2004) IEEE Sens J 4:589–596CrossRefGoogle Scholar
  19. 19.
    Bloor D, Graham A, Williams EJ, Laughlin PJ, Lussey D (2006) Appl Phys Lett 88:102103CrossRefGoogle Scholar
  20. 20.
    Mohammad I, Huang H (2012) Pressure and shear sensing based on microstrip antennas. Proceedings of the SPIE sensors and smart structures technologies for civil, mechanical, and aerospace systems, San Diego, CAGoogle Scholar
  21. 21.
    Yang W, Torah R, Yang K, Beeby S, Tudor J (2012) A novel fabrication process to realize piezoelectric cantilever structures for smart fabric sensor applications. IEEE Sensors Conference, Taipei, TaiwanGoogle Scholar
  22. 22.
    Rothmaier M, Luong M, Clemens F (2008) Sensors 8:4318–4329CrossRefGoogle Scholar
  23. 23.
    Dashti M, Mokhtari J, Nouri M, Shirini F (2012) J Appl Polym Sci 124:3007–3012CrossRefGoogle Scholar
  24. 24.
    Pacelli M, Caldani L, Paradiso R (2006) Textile piezoresistive sensors for biomechanical variables monitoring. 28th Annual international conference of the IEEE engineering in medicine and biology society EMBS, New York City, NYGoogle Scholar
  25. 25.
    Huang CT, Shen CL, Tang CF, Chang SH (2008) Sens Actuators A Phys 141:396–403CrossRefGoogle Scholar
  26. 26.
    Witt J et al (2012) IEEE Sens J 12:246–254CrossRefGoogle Scholar
  27. 27.
    Daoud WA, Xin JH, Szeto YS (2005) Sens Actuators B Chem 109:329–333CrossRefGoogle Scholar
  28. 28.
    Kim H, Kim Y, Kwon Y, Yoo H (2008) A 1.12mW continuous healthcare monitor chip integrated on a planar-fashionable circuit board. Digest of Technical Papers. IEEE International Solid-State Circuits Conference (ISSCC), Philadelphia, PAGoogle Scholar
  29. 29.
    Kwon OS, Park E, Kweon OY, Park SJ, Jang J (2010) Talanta 82:1338–1343CrossRefGoogle Scholar
  30. 30.
    Yang YL et al (2010) Analyst 135:1230–1234CrossRefGoogle Scholar
  31. 31.
    Bai H, Shi G (2007) Sensors 7:267–307CrossRefGoogle Scholar
  32. 32.
    Samsonidze G, Ribeiro FJ, Cohen ML, Louie SG (2014) Phys Rev B 90:035123CrossRefGoogle Scholar
  33. 33.
    Liu C, Qin H, Mather PT (2007) J Mater Chem 17:1543–1558CrossRefGoogle Scholar
  34. 34.
    Hammes PCA, Regtien PPL (1992) Sens Actuators A Phys 32:396–402CrossRefGoogle Scholar
  35. 35.
    Jefferson C, Dodani SC, Chang CJ (2012) Nat Chem 4:973–984CrossRefGoogle Scholar
  36. 36.
    Basudam A, Majumdar S (2004) Prog Polym Sci 29:699–766CrossRefGoogle Scholar
  37. 37.
    Sakai Y, Sadaoka Y, Matsuguchi M (1996) Sens Actuators B Chem 35:85–90CrossRefGoogle Scholar
  38. 38.
    Persaud KC (2005) Mater Today 8:38–44CrossRefGoogle Scholar
  39. 39.
    Peters K (2011) IOP Smart Mater Structures 20:013002CrossRefGoogle Scholar
  40. 40.
    Cho G, Jeong K, Paik MJ, Kwun Y, Sung M (2011) IEEE Sens J 11:3183–3193CrossRefGoogle Scholar
  41. 41.
    Carpi F, De Rossi D (2005) IEEE Trans Inf Technol Biomed 9:574CrossRefGoogle Scholar
  42. 42.
    Kim HK et al (2003) Mol Crystals Liquid Crystals 405:161–169CrossRefGoogle Scholar
  43. 43.
    Lang U, Rust P, Schoberle B, Dual J (2009) Microelectron Eng 86:330–334CrossRefGoogle Scholar
  44. 44.
    Martinez O, Bravos AG, Pinto N (2009) Macromolecules 42:7924–7929CrossRefGoogle Scholar
  45. 45.
    Cochrane C, Koncar V, Lewandowski M, Dufour C (2007) Sensors 7:473–492CrossRefGoogle Scholar
  46. 46.
    Oliva-Avilés AI, Avilés F, Sosa V (2011) Carbon 49:2989–2997CrossRefGoogle Scholar
  47. 47.
    Calvert P, Patra P, Sawhney A, Agrawal A, Duggal D (2007) Printed conducting polymer strain sensors for textiles. 23rd International conference on digital printing technologies, Anchorage, AKGoogle Scholar
  48. 48.
    Wang X, Ostblom M, Johansson T, Inganas O (2004) Thin Solid Films 449:125–132CrossRefGoogle Scholar
  49. 49.
    Okuzaki H, Harashina Y, Yan H (2009) Eur Polym J 45:256–261CrossRefGoogle Scholar
  50. 50.
    Lorussi F, Scilingo EP, Tesconi M, Tognetti A, De Rossi D (2005) IEEE Trans Inf Technol Biomed 9:372–381CrossRefGoogle Scholar
  51. 51.
    Li Y, Leung MY, Tao XM, Cheng XY, Tsang J, Yuen MCW (2005) J Mater Sci 40:4093–4095CrossRefGoogle Scholar
  52. 52.
    Wu J (2004) Synthesis, characterization and applications of conducting polymer coated textiles. Dissertation, University of WollolongGoogle Scholar
  53. 53.
    Sawhney A, Agrawal A, Patra P, Calvert P (2006) Proc Mat Res Soc Symp Smart Nanotextiles 920:103–111Google Scholar
  54. 54.
    Menegazzo N et al (2012) Anal Chem 84:5770–5777CrossRefGoogle Scholar
  55. 55.
    Mujahid A, Lieberzeit PA, Dickert FL (2010) Materials 3:2196–2217CrossRefGoogle Scholar
  56. 56.
    Jin G, Norrish J, Too C, Wallace G (2004) Curr Appl Phys 4:366–369CrossRefGoogle Scholar
  57. 57.
    Yoshioka Y, Jabbour G (2006) Synth Met 156:779–783CrossRefGoogle Scholar
  58. 58.
    Boltau M, Walheim S, Mlynek J, Krausch G, Steiner U (1998) Nature 391:877–879CrossRefGoogle Scholar
  59. 59.
    Sen AK (2001) Coated textiles: principles and applications, 2nd edn. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  60. 60.
    Kim H, Kim Y, Kim B, Yoo HJ (2009) A wearable fabric computer by planar-fashionable circuit board technique. Sixth international workshop on wearable and implantable body sensor networks, Berkeley, CAGoogle Scholar
  61. 61.
    Bhowmick AK (2008) Current topics in elastomers research. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  62. 62.
    Winterhalter CA, Teverovsky J, Wilson P, Slade J, Horowitz W, Tierney E, Sharma V (2005) IEEE Trans Inf Technol Biomed 9:402–406CrossRefGoogle Scholar
  63. 63.
    Institute for soldier nanotechnologies. Massachusetts Institute of Technology. Available from Accessed 20 Dec 2015
  64. 64.
    BAE Broadsword soldier suite. BAE Systems. Available from Accessed 20 Dec 2015
  65. 65.
    Winterhalter CA, Teverovsky J, Horowitz W, Sharma V, Lee K (2004) Wearable electro-textiles for battlefield awareness. Army Natick Soldier Center MA Report ADA431955Google Scholar
  66. 66.
    Collins GE, Buckley LJ (1996) Synth Met 78:93–101CrossRefGoogle Scholar
  67. 67.
    Sahin O, Kayacan O, Bulgun Y (2005) Def Sci J 55:195–205CrossRefGoogle Scholar
  68. 68.
    Simon C, Potter E, McCabe M, Baggerman C (2010) Smart Fabrics Technology Development, NASA Innovation Fund Project, NASA Johnson Space Center ReportGoogle Scholar
  69. 69.
    Ohmatex-Smart Textile Technology. Available from Accessed 20 Dec 2015
  70. 70.
    Axisa F, Schmitt PM, Gehin C, Delhomme G, McAdams E, Dittmar A (2005) IEEE Trans Inf Technol Biomed 9:325–336CrossRefGoogle Scholar
  71. 71.
    Carlos R, Coyle S, Corcoran B, Diamond D, Tomas W, Aaron M, Stroiescu F, Daly K (2011) Web-based sensor streaming wearable for respiratory monitoring applications. IEEE Sensors Conference, Limerick, IrelandGoogle Scholar
  72. 72.
    Engin M, Demirel A, Engin EZ, Fedakar M (2005) Measurement: J Int Measurement Confederation 37:173–188CrossRefGoogle Scholar
  73. 73.
    Patel S et al (2012) J Neuroeng Rehabil 9:21CrossRefGoogle Scholar
  74. 74.
    Coyle S et al (2010) IEEE Trans Inf Technol Biomed 14:364–370CrossRefGoogle Scholar
  75. 75.
    Magenes G, Curone D, Caldani L, Secco EL (2010) Fire fighters and rescuers monitoring through wearable sensors: The ProeTEX project. 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC, Buenos Aires, ArgentinaGoogle Scholar
  76. 76.
    Loher T, Manessis D, Heinrich R, Schmied B, Vanfleteren J, DeBaets J, Ostmann A, Reichl H (2006) Stretchable electronic systems. 8th Electronics packaging technology conference EPTC ’06, SingaporeGoogle Scholar
  77. 77.
    Grillet A, Kinet D, Witt J, Schukar M, Krebber K, Pirotte F, Depre A (2008) IEEE Sens J 8:1215–1222CrossRefGoogle Scholar
  78. 78.
    Langereis G, De Voogd-Claessen L, Spaepen A, Siplia A, Rotsch C, Linz T (2007) ConText: contactless sensors for body monitoring incorporated in textiles. IEEE international conference on portable information devices, Orlando, FLGoogle Scholar
  79. 79.
    Custodio V, Herrera FJ, Lopez G, Moreno JI (2012) Sensors 12:13907–13946CrossRefGoogle Scholar
  80. 80.
    Brady S, Diamond D, Lau KT (2005) Sens Actuators A 119:398–404CrossRefGoogle Scholar
  81. 81.
    Scilingo EP, Gemignani A, Paradiso R, Taccini N, Ghelarducci B, De Rossi D (2005) IEEE Trans Inf Technol Biomed 9:345–352CrossRefGoogle Scholar
  82. 82.
    Healey J (2011) GSR sock: a new e-textile sensor prototype 2011. 15th Annual international symposium on wearable computers ISWC, San Francisco, CAGoogle Scholar
  83. 83.
    Numetrex heart rate monitoring. Available from Accessed 20 Dec 2015
  84. 84.
    Sensingtex Pressure Textile Sensor. Available from Accessed 20 Dec 2015
  85. 85.
    Sensoria fitness smart sock. Copyright Sensoria Inc. 2015. All rights reserved. Images and products protected by US and international intellectual property legislations. Available from Accessed 20 Dec 2015
  86. 86.
    Shu L, Hua T, Wang Y, Li Q, Feng DD, Tao X (2010) IEEE Trans Inf Technol Biomed 14:767–775CrossRefGoogle Scholar
  87. 87.
    Coyle S, Wu Y, Lau KT, De Rossi D, Wallace G, Diamond D (2007) MRS Bull 32:434–442CrossRefGoogle Scholar
  88. 88.
    Hill K, Dolmage TE, Woon L, Goldstein R, Brooks D (2010) Thorax 65:486–491CrossRefGoogle Scholar
  89. 89.
    Harada T, Mori T, Nishida Y, Yoshimi T, Sato T (1999) Body parts positions and posture estimation system based on pressure distribution image. Proceedings of the IEEE international conference on robotics and automation, Detroit, MIGoogle Scholar
  90. 90.
    Wijesiriwardana R (2006) IEEE Sens J 6:571–579CrossRefGoogle Scholar
  91. 91.
    Calvert P, Duggal D, Patra P, Agrawal A, Sawhney A (2008) Mol Crystals Liquid Crystals 484:291–302CrossRefGoogle Scholar
  92. 92.
    Scilingo EP, Lorussi F, Mazzoldi A, De Rossi D (2003) IEEE Sens J 3:460–467CrossRefGoogle Scholar
  93. 93.
    Liu N, Fang G, Wan J, Hai Z, Long H, Zhao X (2011) J Mater Chem 21:18962–18966CrossRefGoogle Scholar
  94. 94.
    Catrysse M, Puers R, Hertleer C, Langenhove LV, Van Egmondc H, Matthys D (2004) Sens Actuators A Phys 114:302–311CrossRefGoogle Scholar
  95. 95.
    Kim KJ, Chang YM, Yoon SK, Hyun J (2009) Integrated Ferroelectrics 107:53–68CrossRefGoogle Scholar
  96. 96.
    Pantelopoulos A, Bourbakis N (2008) A survey on wearable biosensor systems for health monitoring. 30th Annual international conference of the IEEE engineering in medicine and biology society EMBS, Vancouver, CanadaGoogle Scholar
  97. 97.
    Heilman KJ, Porges SW (2007) Biol Psychol 75:300–305CrossRefGoogle Scholar
  98. 98.
    Noury N et al (2004) VTAMN – a smart clothe for ambulatory remote monitoring of physiological parameters and activity. 30th Annual international conference of the IEEE engineering in medicine and biology society EMBS, San Francisco, CAGoogle Scholar
  99. 99.
    McCarthy B, Varakliotis S, Edwards C, Roedig U (2010) Real-world wireless sensor networks. Lecture Notes in Computer Science 6511:37–48CrossRefGoogle Scholar
  100. 100.
    Harms H, Amft O, Tröster G, Roggen D (2008) SMASH: a distributed sensing and processing garment for the classification of upper body postures. Proceedings of the ICST 3rd international conference on body area networks BodyNets ‘08. ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Brussels, BelgiumGoogle Scholar
  101. 101.
    Textronics-Energy activated fabrics. Available from Accessed 20 Dec 2015
  102. 102.
    Zephyr bioharness. Available from Accessed 20 Dec 2015
  103. 103.
    Xu D (2006) A neural network approach for hand gesture recognition in virtual reality driving training system of SPG. 18th international conference on pattern recognition ICPR, Hong Kong, ChinaGoogle Scholar
  104. 104.
    Kamel NS, Sayeed S, Ellis GA (2008) IEEE Trans Pattern Anal Mach Intell 30:1109–1113CrossRefGoogle Scholar
  105. 105.
    Hernandez-Rebollar JL, Kyriakopoulos N, Lindeman RW (2002) The AcceleGlove: a whole-hand input device for virtual reality. ACM SIGGRAPH conference abstracts and applications, San Antonio, TXGoogle Scholar
  106. 106.
    Kallmayer C, Simon E (2012) Large area sensor integration in textiles. International multi-conference on systems, signals and devices SSD, Chemnitz, GermanyGoogle Scholar
  107. 107.
    Scottevest Smart Jacket. Available from Accessed 20 Dec 2015
  108. 108.
    Yanfen L, Pu H (2011) Smart sportswear. International conference on future computer science and education (ICFCSE), Xi’an, ChinaGoogle Scholar
  109. 109.
    Koninklijke Philips Electronics N.V. © 2006 Reprinted, with permission, from Password, Philips Research technology magazine, issue 28, October 2006Google Scholar
  110. 110.
    Strickland P, Reid G, Burrows B (1997) Thermal profiles in footwear design: an in-sole measurement system. Proceedings of the 4th annual conference mechatronics and machine vision in practice, Toowoomba, AustraliaGoogle Scholar
  111. 111.
    McClusky M (2009) Wired 17:07Google Scholar
  112. 112.
    Boyd BS et al (2007) J Neurosci Res 85:2272–2283CrossRefGoogle Scholar
  113. 113.
    Hurkmans LP, Bussmann JBJ, Benda E, Verhaar JAN (2006) Gait Posture 23:118–125CrossRefGoogle Scholar
  114. 114.
    PPS digitacts human tactile system. Available from Accessed 20 Dec 2015
  115. 115.
    Texisense smart sock. Available from Accessed 20 Dec 2015
  116. 116.
    Textile Sensoric Alphafit- Smart Sock and Alphamat. Available from Accessed 20 Dec 2015
  117. 117.
    Chen W, Nguyen ST, Bouwstra S, Coops R, Brown L, Oetomo SB, Feijs L (2011) Design of wireless sensor system for neonatal monitoring. 4th IFIP international conference on new technologies, mobility and security NTMS, Paris, FranceGoogle Scholar
  118. 118.
    Campbell T, Munro B, Wallace G, Steele J (2007) J Biomech 40:3056–3059CrossRefGoogle Scholar
  119. 119.
    Quinn B (2002) Techno Fashion. Berg, OxfordCrossRefGoogle Scholar
  120. 120.
    Farringdon J (2001) Tech Textiles Int 10:22–24Google Scholar
  121. 121.
    Meoli D, May-Plumlee T (2002) JTATM 2:2Google Scholar
  122. 122.
    Sandbach DL (2002) Detector constructed from fabric having non-uniform conductivity. US Patent No 6,369,804, 9 April 2002.Google Scholar
  123. 123.
    Schubert MB, Werner JH (2006) Mater Today 9:42–50CrossRefGoogle Scholar
  124. 124.
    Serra AA, Nepa P, Manara G (2012) IEEE Trans Antennas Propag 60:1035–1042CrossRefGoogle Scholar
  125. 125.
    Wiggen ON, Storholmen TCB, Naesgaard OP, Faerevik H (2012) Safe@Sea- Improved protective clothing for fishermen in the high north. 3rd Barents occupational health workshop, Oulu, FinlandGoogle Scholar
  126. 126.
    Rantanen J et al (2000) Smart clothing for the arctic environment. The fourth international symposium on wearable computers. IEEEGoogle Scholar
  127. 127.
    Eidsmo RR, Hilde F, Kristine H, Kare RJ (2008) SINTEF Smart helicopter survival suit. Innovations Report SINTEF S6971Google Scholar
  128. 128.
    Short DC et al (2011) Ionized performance fabric composition. United States Patent 7896928Google Scholar
  129. 129.
    Takamatsu S, Kobayashi T, Shibayama N, Miyake K, Itoh T (2011) Meter-scale surface capacitive type of touch sensors fabricated by weaving conductive-polymer-coated fibres. Symposium on design, test, integration and packaging of MEMS/MOEMS DTIP, Bernin, FranceGoogle Scholar
  130. 130.
    Zheng N, Wu Z, Lin M, Yang LT, Pan G (2010) IEEE Trans Syst Man Cybernetics 40:36–51CrossRefGoogle Scholar
  131. 131.
    Liehr S et al (2008) Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles. Proceedings of the SPIE optical sensors, Strasbourg, FranceGoogle Scholar
  132. 132.
    Heat blanket by Eeonyx. Available from Accessed 20 Dec 2015
  133. 133.
    Yip M, He DD, Winokur E, Balderrama AG, Sheridan R, Hongshen Ma (2009) A flexible pressure monitoring system for pressure ulcer prevention. Annual international conference of the IEEE engineering in medicine and biology society EMBC, Minneapolis, MNGoogle Scholar
  134. 134.
    Baurley Pers S (2004) Ubiquit 8:274–281Google Scholar
  135. 135.
    Buechley L (2006) A construction kit for electronic textiles. 10th IEEE international symposium wearable computers, Montreux, SwitzerlandGoogle Scholar
  136. 136.
    Visijax Commuter Jacket with turn signals. Available from: Accessed 20 Dec 2015

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations