Advertisement

Smart Polymer Surfaces

  • Juan Rodríguez-HernándezEmail author
Chapter

Abstract

The preparation of smart surfaces (i.e., surfaces exhibiting switchable and a priori contradictory properties) has been extensively pursued during the last decade. Their unique adaptability by property variation as a function of environmental changes has found multiple industrial applications in fields including sensoring and diagnosis or in the biomedical field to promote, for instance, cell and tissue engineering. This chapter will provide an overview of the main strategies reported to produce adaptive surfaces depending on the external stimuli employed to vary reversibly the surface properties. The variation of the surface topography at the micro- and nanopatterned interfaces will be described as an additional tool to significantly alter the final surface properties. Differentiation will be provided between the methodologies to prepare patterned surfaces as a function of their final resolution. Finally, some of the applications will be highlighted in which smart polymer surfaces have been applied including wettability, biomedical purposes, sensoring, or smart adhesion.

Keywords

Polymer surfaces Smart interfaces Micro-/nanopatterned surfaces Stimulus responsive 

References

  1. 1.
    Mendes PM (2008) Stimuli-responsive surfaces for bio-applications. Chem Soc Rev 37(11):2512–2529CrossRefGoogle Scholar
  2. 2.
    Motornov M, Minko S, Eichhorn KJ, Nitsche M, Simon F, Stamm M (2003) Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes. Langmuir 19(19):8077–8085CrossRefGoogle Scholar
  3. 3.
    Alexander C, Shakesheff KM (2006) Responsive polymers at the biology/materials science interface. Adv Mater 18(24):3321–3328CrossRefGoogle Scholar
  4. 4.
    Gras SL, Mahmud T, Rosengarten G, Mitchell A, Kalantar-Zadeh K (2007) Intelligent control of surface hydrophobicity. Chem Phys Chem 8(14):2036–2050Google Scholar
  5. 5.
    Crevoisier GB, Fabre P, Corpart JM, Leibler L (1999) Switchable tackiness and wettability of a liquid crystalline polymer. Science 285(5431):1246–1249CrossRefGoogle Scholar
  6. 6.
    Sun TL, Wang G, Feng L, Liu B, Ma Y, Jiang L, Zhu D (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Ed 43(3):357–360CrossRefGoogle Scholar
  7. 7.
    Kontturi K, Mafé S, Manzanares JA, Svarfvar BL, Viinikka P (1996) Modeling of the salt and pH effects on the permeability of grafted porous membranes. Macromolecules 29(17):5740–5746CrossRefGoogle Scholar
  8. 8.
    Wilson MD, Whitesides GM (1988) The anthranilate amide of polyethylene carboxylic-acid shows an exceptionally large change with ph in its wettability by water. J Am Chem Soc 110(26):8718–8719CrossRefGoogle Scholar
  9. 9.
    Lahann J, Mitragotri S, Tran TN, Kaido H, Sundaram J, Choi IS, Hoffer S, Somorjai GA, Langer R (2003) A reversibly switching surface. Science 299:371–374CrossRefGoogle Scholar
  10. 10.
    Katz E, Lioubashevsky O, Willner I (2004) Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J Am Chem Soc 126(47):15520–15532CrossRefGoogle Scholar
  11. 11.
    Ichimura K, Oh SK, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288:1624–1626CrossRefGoogle Scholar
  12. 12.
    Feng CL, Jin J, Zhang YJ, Song YL, Xie L, Qu GR, Xu Y, Jiang L (2001) Reversible light-induced wettability of fluorine-containing azobenzene-derived Langmuir-Blodgett films. Surf Interface Anal 32(1):121–124CrossRefGoogle Scholar
  13. 13.
    Raduge C, Papastavrou G, Kurth DG, Motschmann H (2003) Controlling wettability by light: illuminating the molecular mechanism. Eur Phys J E 10(2):103–114CrossRefGoogle Scholar
  14. 14.
    Cooper CG, MacDonald JC, Soto E, McGimpsey WG (2004) Noncovalent assembly of a photoswitchable surface. J Am Chem Soc 126(4):1032–1033CrossRefGoogle Scholar
  15. 15.
    Berna J, Leigh DA, Lubomska M, Mendoza SM, Pérez EM, Rudolf P, Teobaldi G, Zerbetto F (2005) Macroscopic transport by synthetic molecular machines. Nat Mater 4(9):704–710CrossRefGoogle Scholar
  16. 16.
    Jiang WH, Wang G, He Y, Wang X, An Y, Songa Y, Jiang L (2005) Photoswitched wettability on an electrostatic self-assembly azobenzene monolayer. Chem Commun 28:3550–3552CrossRefGoogle Scholar
  17. 17.
    Zhao B, Brittain WJ, Zhou W, Cheng SZD (2000) Nanopattern formation from tethered PS-b-PMMA brushes upon treatment with selective solvents. J Am Chem Soc 122(10):2407–2408CrossRefGoogle Scholar
  18. 18.
    Julthongpiput D, Lin YH, Teng J, Zubarev ER, Tsukruk VV (2003) Yshaped amphiphilic brushes with switchable micellar surface structures. J Am Chem Soc 125(51):15912–15921CrossRefGoogle Scholar
  19. 19.
    Berndt E, Ulbricht M (2009) Synthesis of block copolymers for surface functionalization with stimuli-responsive macromolecules. Polymer 50(22):5181–5191CrossRefGoogle Scholar
  20. 20.
    Alarcon CDH, Farhan T, Osborne L, Huck WTS, Alexander C (2005) Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J Mater Chem 15(21):2089–2094CrossRefGoogle Scholar
  21. 21.
    Kaholek M, Lee W-K, LaMattina B, Caster KC, Zauscher S (2004) Fabrication of stimulus-responsive nanopatterned polymer brushes by scanning-probe lithography. Nano Lett 4(2):373–376CrossRefGoogle Scholar
  22. 22.
    Matsuda N, Yamato M, Okano T (2007) Tissue engineering based on cell sheet technology. Adv Mater 19(20):3089–3099CrossRefGoogle Scholar
  23. 23.
    Mizutani A, Kikuchi A, Yamato M, Kanazawaa H, Okano T (2008) Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Biomaterials 29(13):2073–2081CrossRefGoogle Scholar
  24. 24.
    Ernst O, Lieske A, Holländer A, Lankenau A, Duschl C (2008) Tuning of thermo-responsive self-assembly monolayers on gold for cell-type-specific control of adhesion. Langmuir 24(18):10259–10264CrossRefGoogle Scholar
  25. 25.
    Yamamoto S, Pietrasik J, Matyjaszewski K (2007) ATRP synthesis of thermally responsive molecular brushes from oligo(ethylene oxide) methacrylates. Macromolecules 40(26):9348–9353CrossRefGoogle Scholar
  26. 26.
    Lutz J-F, Andrieu J, Üzgün S, Rudolph C, Agarwal S (2007) Biocompatible, thermoresponsive, and biodegradable: simple preparation of “all-in-one” biorelevant polymers. Macromolecules 40(24):8540–8543CrossRefGoogle Scholar
  27. 27.
    Lutz J-F, Weichenhan K, Akdemir Ö, Hoth A (2007) About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 40(7):2503–2508CrossRefGoogle Scholar
  28. 28.
    Becer CR, Hahn S, Fijten MWM, Thijs HML, Hoogenboom R, Schubert US (2008) Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. J Polym Sci Part A PolymChem 46(21):7138–7147CrossRefGoogle Scholar
  29. 29.
    Holder SJ, Durand G, Yeoh C-T, Illi E, Hardy NJ, Richardson TH (2008) The synthesis and self-assembly of aba amphiphilic block copolymers containing styrene and oligo(ethylene glycol) methy ether methacrylate in dilute aqueous solutions: elevated cloud point temperatures for thermoresponsive micelles. J Polym Sci Part A Polym Chem 46(23):7739–7756CrossRefGoogle Scholar
  30. 30.
    Meyer DE, Chilkoti A (2004) Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 5(3):846–851CrossRefGoogle Scholar
  31. 31.
    Fernandez-Trillo F, van Hest JCM, Thies JC, Michon T, Weberskirch R, Cameron NR (2009) Reversible immobilization onto peg-based emulsion-templated porous polymers by co-assembly of stimuli responsive polymers. Adv Mater 21(1):55–59CrossRefGoogle Scholar
  32. 32.
    Azzaroni O, Brown AA, Huck WTS (2006) Wetting transitions of polyzwitterionic brushes driven by self-association. Angew Chem Int Ed 45(11):1770–1774CrossRefGoogle Scholar
  33. 33.
    Sumaru K, Kameda M, Kanamori T, Shinbo T (2004) Reversible and efficient proton dissociation of spirobenzopyran-functionalized poly(N-isopropylacrylamide) in aqueous solution triggered by light irradiation and temporary temperature rise. Macromolecules 37(21):7854–7856CrossRefGoogle Scholar
  34. 34.
    Vallet M, Berge B, Vovelle L (1996) Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer 37(12):2465–2470CrossRefGoogle Scholar
  35. 35.
    Wischerhoff E, Badi N, Laschewsky A, Lutz J-F (2011) Smart polymer surfaces: concepts and applications inbiosciences. In: Börner HG, Lutz J-F (eds) Bioactive surfaces. Springer, Berlin, pp 1–33Google Scholar
  36. 36.
    Rodriguez-Hernandez J, Ibarboure E, Papon E (2011) Surface segregation of polypeptide-based block copolymer micelles: an approach to engineer nanostructured and stimuli responsive surfaces. Eur Polym J 47(11):2063–2068CrossRefGoogle Scholar
  37. 37.
    Chen J-K, Pai P-C, Chang J-Y, Fan S-K (2012) pH-responsive one- dimensional periodic relief grating of polymer brush–gold nanoassemblies on silicon surface. ACS Appl Mater Inter 4(4):1935–1947CrossRefGoogle Scholar
  38. 38.
    Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29(7):635–698CrossRefGoogle Scholar
  39. 39.
    Bousquet A, Pannier G, Ibarboure E, Papon E, Rodríguez-Hernández J (2007) Control of the surface properties in polymer blends. J Adhes 83(4):335–349CrossRefGoogle Scholar
  40. 40.
    Yamato M, Konno C, Utsumi M, Kikuchi A, Okano T (2002) Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23(2):561–567CrossRefGoogle Scholar
  41. 41.
    Behrendt R, Renner C, Schenk M, Wang F, Wachtveitl J, Oesterhelt D, Moroder L (1999) Photomodulation of the conformation of cyclic peptides with azobenzene moieties in the peptide backbone. Angew Chem Int Ed 38(18):2771–2774CrossRefGoogle Scholar
  42. 42.
    Bunker BC, Kim BI, Houston JE, Rosario R, Garcia AA, Hayes M, Gust D, Picraux ST (2003) Direct observation of photo switching in tethered spiropyrans using the interfacial force microscope. Nano Lett 3(12):1723–1727CrossRefGoogle Scholar
  43. 43.
    Athanassiou A, Lygeraki MI, Pisignano D, Lakiotaki K, Varda M, Mele E, Fotakis C, Cingolani R, Anastasiadis SH (2006) Photocontrolled variations in the wetting capability of photochromic polymers enhanced by surface nanostructuring. Langmuir 22(5):2329–2333CrossRefGoogle Scholar
  44. 44.
    Chen J-K, Hsieh C-Y, Huang C-F, Li P-M, Kuo S-W, Chang F-C (2008) Using solvent immersion to fabricate variably patterned poly(methyl methacrylate) brushes on silicon surfaces. Macromolecules 41(22):8729–8736CrossRefGoogle Scholar
  45. 45.
    Chen J-K, Hsieh C-Y, Huang C-F, Li P-M (2009) Characterization of patterned poly(methyl methacrylate) brushes under various structures upon solvent immersion. J Colloid Interface Sci 338(2):428–434CrossRefGoogle Scholar
  46. 46.
    Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli responsive polymer materials. Nat Mater 9(2):101–113CrossRefGoogle Scholar
  47. 47.
    Russell TP (2002) Surface-responsive materials. Science 297(5583):964–967CrossRefGoogle Scholar
  48. 48.
    Alarcón CDLH, Twaites B, Cunliffe D, Smith JR, Alexander C (2005) Grafted thermo- and pH responsive co-polymers: surface-properties and bacterial adsorption. Int J Pharm 295(1–2):77–91CrossRefGoogle Scholar
  49. 49.
    Nath N, Chilkoti A (2002) Creating “smart” surfaces using stimuli responsive polymers. Adv Mater 14(17):1243–124CrossRefGoogle Scholar
  50. 50.
    Xia F, Feng L, Wang S, Sun T, Song W, Jiang W, Jiang L (2006) Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv Mater 18(4):432–436CrossRefGoogle Scholar
  51. 51.
    Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman AS, Stayton PS (2002) Photoresponsive polymer-enzyme switches. Proc Natl Acad Sci USA 99(26):16592–16596CrossRefGoogle Scholar
  52. 52.
    Xia F, Ge H, Hou Y, Sun T, Chen L, Zhang G, Jiang L (2007) Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv Mater 19(18):2520–2524CrossRefGoogle Scholar
  53. 53.
    Falconnet D, Csucs G, Grandin HM, Textor M (2006) Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16):3044–3063CrossRefGoogle Scholar
  54. 54.
    Lupitskyy R, Roiter Y, Tsitsilianis C, Minko S (2005) From smart polymermolecules to responsive nanostructured surfaces. Langmuir 21(19):8591–8593CrossRefGoogle Scholar
  55. 55.
    Kim H-C, Hinsberg WD (2008) Surface patterns from block copolymer self-assembly. J Vac Sci Technol A 26(6):1369–1382CrossRefGoogle Scholar
  56. 56.
    Park C, Yoon J, Thomas EL (2003) Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44(22):6725–6760CrossRefGoogle Scholar
  57. 57.
    Kim YS, Lim JY, Donahue HJ, Lowe TL (2005) Thermoresponsive terpolymeric films applicable for osteoblastic cell growth and noninvasive cell sheet harvesting. Tissue Eng 11(1–2):30–40CrossRefGoogle Scholar
  58. 58.
    da Silva RMP, López-Pérez PM, Elvira C, Mano JF, San Román J, Reis RL (2008) Poly(N-Isopropylacrylamide) surface-grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation. Biotechnol Bioeng 101(6):1321–1331CrossRefGoogle Scholar
  59. 59.
    An YH, Webb D, Gutowska A, Mironov VA, Friedman RJ (2001) Regaining chondrocyte phenotype in thermosensitive gel culture. Anat Rec 263(4):336–341CrossRefGoogle Scholar
  60. 60.
    Casolaro M, Barbucci R (1991) An insulin-releasing system responsive to glucose: thermodynamic evaluation of permeability properties. Int J Artif Organs 14(11):732–738Google Scholar
  61. 61.
    Imanishi Y, Ito Y (1995) Glucose-sensitive insulin-releasing molecular systems. Pure Appl Chem 67(12):2015–2021CrossRefGoogle Scholar
  62. 62.
    Ye G, Wang X (2010) Polymer diffraction gratings on stimuli-responsive hydrogel surfaces: soft-lithographic fabrication and optical sensing properties. Sens Actuators B 147(2):707–713CrossRefGoogle Scholar
  63. 63.
    http://www.lumina.se/ (Last accessed: May 2015)

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Polymer Science and Technology (ICTP-CSIC)MadridSpain

Personalised recommendations