Advertisement

Characterization and Performance of Stress- and Damage-Sensing Smart Coatings

  • Gregory Freihofer
  • Seetha RaghavanEmail author
Chapter

Abstract

Mechanical enhancement of polymers with high modulus reinforcements, such as ceramic particles, has facilitated the development of structural composites with applications in the aerospace industry where strength to efficiency ratio is of significance. These modifiers have untapped multifunctional sensing capabilities that can be enabled by deploying these particles innovatively in polymer composites and as coatings. This chapter highlights some of the recent and novel findings in the development of piezospectroscopic particle-reinforced polymers as smart stress- and damage-sensing coatings. The sections in this chapter describe the piezospectroscopic effect for alumina-based particulate composites, show the derivation of multiscale mechanics to quantify substrate stresses with piezospectroscopy, and demonstrate their performance in stress and damage sensing applied to a composite material. The noninvasive instrumentation is outlined and discussed for current and future applications in the industry ranging from manufacturing quality control to in-service damage inspections.

Keywords

Smart coatings Piezospectroscopy Multiscale mechanics 

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. CMMI 1130837.

References

  1. 1.
    Kaplyanskii AA, Przhevuskii AK (1962) Sov Phys Dokaldy 7(1):313Google Scholar
  2. 2.
    Frank O, Tsoukleri G, Riaz I, Papagelis K, Parthenios J, Ferrari AC, Geim AK, Novoselov KS, Galiotis C (2011) Nat Commun 2(255):1Google Scholar
  3. 3.
    He J, Clarke DR (1997) J Am Ceram Soc 80:69–78CrossRefGoogle Scholar
  4. 4.
    Stevenson A, Jones A, Raghavan S (2011) Nano Lett 11:3274CrossRefGoogle Scholar
  5. 5.
    Barnett JD, Block S, Piermarini GJ (1973) Rev Sci Instrum 44:1CrossRefGoogle Scholar
  6. 6.
    Grabner L (1978) J Appl Phys 49(5):580CrossRefGoogle Scholar
  7. 7.
    Christensen R, Lipkin D, Clarke D (1996) Appl Phys Lett 69:3754CrossRefGoogle Scholar
  8. 8.
    Ma Q, Clarke DR (1993) J Am Ceram Soc 76(6):1433CrossRefGoogle Scholar
  9. 9.
    Porporati AA, Miyatake T, Schilcher K, Zhu W, Pezzotti G (2011) J Eur Ceram Soc 31:2031CrossRefGoogle Scholar
  10. 10.
    Liu H, Wang Q, Wu J, Zhang C, Wang J, Tang Y (2008) Seventh international conference on photonics and imaging in biology and medicineGoogle Scholar
  11. 11.
    Freihofer G, Schulzgen A, Raghavan S (2014) Acta Mater 81:211CrossRefGoogle Scholar
  12. 12.
    Munisso MC, Yano S, Zhu W, Pezzotti G (2008) Continuum Mech Thermodyn 20:123CrossRefGoogle Scholar
  13. 13.
    Pezzotti G (1999) J Raman Spectrosc 30:867CrossRefGoogle Scholar
  14. 14.
    Raghavan S, Imbrie PK (2009) Am Ceram Soc 11(11):1Google Scholar
  15. 15.
    Raghavan S, Imbrie P (2008) Proceedings of the materials science and technology 2008 conference, Pittsburgh, PAGoogle Scholar
  16. 16.
    Lipkin D, Clarke D (1996) Oxid Met 45:267CrossRefGoogle Scholar
  17. 17.
    Burris DL, Sawyer WG (2006) Wear 260(7):915CrossRefGoogle Scholar
  18. 18.
    Withey PA, Vemuru VSM, Bachilo SM, Nagarajaiah S, Weisman RB (2012) Nano Lett 12(7):34970CrossRefGoogle Scholar
  19. 19.
    Lee MY, Ahn SK, Montgomery ST (2006) Statistical analysis of compositional factors affecting the compressive strength of alumina-loaded epoxy. Technical report, SANDIA National laboratoriesGoogle Scholar
  20. 20.
    Setchell RE, Anderson MU, Montgomery ST (2007) J Appl Phys 101:083527CrossRefGoogle Scholar
  21. 21.
    Millett JCF, Deas D, Bourne NK, Montgomery ST (2007) J Appl Phys 102:063518CrossRefGoogle Scholar
  22. 22.
    Song B, Chen W, Montgomery S, Forrestal M (2009) J Compos Mater 43:1519CrossRefGoogle Scholar
  23. 23.
    Siegel R, Chang S, Ash B, Stone J, Ajayan P, Doremus R, Schadler L (2001) Scripta Mater 44:2061–2064CrossRefGoogle Scholar
  24. 24.
    Derby B (1998) Curr Opinion Solid State Mater Sci 3:490CrossRefGoogle Scholar
  25. 25.
    Suraj RPS, Zunjarrao C (2006) Compos Sci Technol 66:2296–2305CrossRefGoogle Scholar
  26. 26.
    Vaia RA, Maguire JF (2007) Chem Mater 19:2736–2751CrossRefGoogle Scholar
  27. 27.
    Millett JCF, Bourne NK, Deas D (2005) J Phys D Appl Phys 38:930CrossRefGoogle Scholar
  28. 28.
    Marur P, Batra R, Garcia G, Loos A (2004) J Mater Sci 39(4):1437CrossRefGoogle Scholar
  29. 29.
    Ji QL, Zhang MQ, Rong MZ, Wetzel B, Friedrich K (2004) J Mater Sci 39(21):6487CrossRefGoogle Scholar
  30. 30.
    Sawyer WG, Freudenberg KD, Bhimaraj P, Schadler LS (2003) Wear 254:573CrossRefGoogle Scholar
  31. 31.
    Shao X, Xue Q, Liu W, Teng M, Liu H, Tao X (2005) J Appl Polym Sci 95(5):993CrossRefGoogle Scholar
  32. 32.
    Chen B (2004) Encyclopedia of nanoscience and nanotechnology. Dekker, New YorkGoogle Scholar
  33. 33.
    Zunjarrao SC, Singh RP (2006) Compos Sci Technol 66(13):2296CrossRefGoogle Scholar
  34. 34.
    Cho J, Joshi M, Sun C (2006) Compos Sci Technol 66:1941CrossRefGoogle Scholar
  35. 35.
    Douce J, Boilot JP, Biteau J, Scodellaro L, Jimenez A (2004) Thin Solid Films 466(1):114CrossRefGoogle Scholar
  36. 36.
    Lim S, Zeng K, He C (2010) Mater Sci Eng A 527(21):5670CrossRefGoogle Scholar
  37. 37.
    Stevenson A, Jones A, Raghavan S (2011) Polymer 43:923CrossRefGoogle Scholar
  38. 38.
    Beyerlein IJ, Amer MS, Schadler LS, Phoenix SL (2011) Sci Eng Compos Mater 7(1–2):151Google Scholar
  39. 39.
    Ravichandran G, Subhash G (1995) lnt J Solids Struct 32:2627CrossRefGoogle Scholar
  40. 40.
    Lankford J (1977) J Mater Sci 12:791CrossRefGoogle Scholar
  41. 41.
    Lankford J, Predebon W, Staehler J, Subhash G, Pletka B, Anderson C (1998) Mech Mater 29:205CrossRefGoogle Scholar
  42. 42.
    Eshelby R (1957) Proc R Soc Lond A241:376CrossRefGoogle Scholar
  43. 43.
    Mori T, Tanaka K (1973) Acta Metall 21(5):571CrossRefGoogle Scholar
  44. 44.
    Freihofer G (2014) Nanocomposite coating mechanics via piezospectroscopy. PhD thesis, University of Central FloridaGoogle Scholar
  45. 45.
    Hallett SR, Green BG, Jiang WG, Cheung KH, Wisnom MR (2009) Int J Fract 158:169CrossRefGoogle Scholar
  46. 46.
    Freihofer G, Dustin J, Tat H, Schlzgen A, Raghavan S (2015) AIP Adv 5:037139CrossRefGoogle Scholar
  47. 47.
    Freihofer G, Schülzgen A, Raghavan S (2015) Damage mapping with a degrading elastic modulus using piezospectroscopic coatings. NDT E Int 75:65–71CrossRefGoogle Scholar
  48. 48.
    Freihofer G, Bullock A, Vaughn F, Tat H, Dustin J, Schülzgen A, Raghavan S (2014) Proceeding of the society for the advancement of material and process engineering 2014 conference, Seattle, WAGoogle Scholar
  49. 49.
    Camanho PP, Maimí P, Davila C (2007) Compos Sci Technol 67(13):2715CrossRefGoogle Scholar
  50. 50.
    Vinogradov V, Hashin Z (2005) Int J Solids Struct 42:365CrossRefGoogle Scholar
  51. 51.
    Mollenhauer D, Iarve E, Kim R, Langley B (2006) Compos A Appl Sci Manuf 37:282CrossRefGoogle Scholar
  52. 52.
    Hanhan I, Durnberg E, Freihofer G, Akin P, Raghavan S (2014) J Instrum 9, P11005CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of Central FloridaOrlandoUSA

Personalised recommendations