Advertisement

Intercalation of Poly[oligo(ethylene glycol)-oxalate] into Lithium Hectorite

  • Iskandar Saada
  • Rabin BissessurEmail author
  • Douglas C. Dahn
  • Matthieu Hughes
  • Victoria Trenton
Chapter

Abstract

Intercalation of poly[oligo(ethylene glycol)-oxalate] (POEGO) into lithium hectorite was conducted. A series of nanocomposite materials were prepared by varying the molar ratio of the polymer to the lithium hectorite. The nanocomposites were characterized using powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and attenuated total reflectance (ATR) spectroscopy. AC impedance spectroscopy was used to measure the ionic resistance of the nanocomposites when complexed with lithium triflate.

Keywords

Lithium hectorite Poly[oligo(ethylene glycol)-oxalate] Nanocomposites Solid electrolytes 

Notes

Acknowledgments

The authors are grateful for the financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada, Canada Foundation for Innovation (CFI), Atlantic Innovation Fund (AIF) of Canada, and UPEI.

References

  1. 1.
    Panero S, Settimi L, Croce F, Scrosati B (2006) New types of rechargeable lithium and lithium-ion polymer batteries. ECS Trans 1:1Google Scholar
  2. 2.
    Scully SF, Bissessur R (2010) Encapsulation of polymer eectrolytes into hectorite. Appl Clay Sci 47:444CrossRefGoogle Scholar
  3. 3.
    Blumstein A (1965) Polymerization of adsorbed monolayers. I. Preparation of the clay-polymer complex. J Polym Sci A 3:2653Google Scholar
  4. 4.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539CrossRefGoogle Scholar
  5. 5.
    Kurian M, Galvin ME, Trapa PE, Sadoway DR (2005) Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications. Electrochim Acta 50:2125CrossRefGoogle Scholar
  6. 6.
    Scully SF, Bissessur R, MacLean KW, Dahn DC (2009) Inclusion of poly [bis(methoxyethoxyethoxy)phosphazene] into layered graphite oxide. Solid State Ionics 180:216Google Scholar
  7. 7.
    Xu W, Belieres J-P, Angell CA (2001) Ionic conductivity and electrochemical stability of poly[oligo(ethylene glycol)oxalate]−lithium salt complexes. Chem Mater 13:575CrossRefGoogle Scholar
  8. 8.
    Hoffman AS (1995) “Intelligent” polymers in medicine and biotechnology. Macromol Symp 98:645. doi: 10.1002/masy.19950980156
  9. 9.
    Bissessur R, Schipper D (2008) Exfoliation and reconstruction of SnS2 layers: A synthetic route for the preparation polymer-SnS2nanomaterials. Mater Lett 62:1638CrossRefGoogle Scholar
  10. 10.
    Bissessur R, Scully SF (2007) Intercalation of solid polymer electrolytes into graphite oxide. Solid State Ionics 178:877CrossRefGoogle Scholar
  11. 11.
    Carretero MI, Pozo M (2009) Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications. Appl Clay Sci 46:73CrossRefGoogle Scholar
  12. 12.
    Zhang D, Zhou C-H, Lin C-X, Tong D-S, Yu W-H (2010) Synthesis of clay minerals. Appl Clay Sci 50:1CrossRefGoogle Scholar
  13. 13.
    Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mater Sci Eng C 3:109CrossRefGoogle Scholar
  14. 14.
    Sandí G, Carrado KA, Joachin H, Lu W, Prakash J (2003) Polymer nanocomposites for lithium battery applications. J Power Sources 119–121:492CrossRefGoogle Scholar
  15. 15.
    Riley M, Fedkiw PS, Khan SA (2002) Transport properties of lithium hectorite-based composite elctrolytes. J Electrom Soc 149:A667CrossRefGoogle Scholar
  16. 16.
    Madejová J, Bujdák J, Janek M, Komadel P (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochim Acta Part A 54:1397CrossRefGoogle Scholar
  17. 17.
    Carrado KA, Forman JE, Botto RE, Winans RE (1993) Incorporation of phthalocyanines by cationic and anionic clays via ion exchange and direct synthesis. Chem Mater 5:472CrossRefGoogle Scholar
  18. 18.
    Voulgaris D, Petridis D (2002) Emulsifying effect of dimethyldioctadecylammonium-hectorite in polystyrene/poly(ethyl methacrylate) blends. Polymer 43:2213CrossRefGoogle Scholar
  19. 19.
    Kuykendall VG, Thomas JK (1990) Photophysical and photochemical studies of ruthenium (tris(bipyridine) on hectorite. J Phys Chem 94:4224CrossRefGoogle Scholar
  20. 20.
    Singhal RG, Capracotta MD, Martin JD, Khan SA, Fedkiw PS (2004) Transport properties of hectorite based nanocomposite single ion conductors. J Power Sources 128:247CrossRefGoogle Scholar
  21. 21.
    Barsoukov E, Macondald JR (2005) Impedance spectroscopy: theory, experiment, and applications (2nd edn). Wiley, Hoboken, NJGoogle Scholar
  22. 22.
    Macdonald JR (2015) jrossmacdonald.com/levmw, accessed 25 June 2015Google Scholar
  23. 23.
    Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystalline size using XRD. World J Nano Sci Eng 2:154CrossRefGoogle Scholar
  24. 24.
    Spartan ’08, Wavefunction Inc., Irvine, CA, 2008Google Scholar
  25. 25.
    Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439CrossRefGoogle Scholar
  26. 26.
    Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Iskandar Saada
    • 1
  • Rabin Bissessur
    • 1
    Email author
  • Douglas C. Dahn
    • 2
  • Matthieu Hughes
    • 2
  • Victoria Trenton
    • 2
  1. 1.Department of ChemistryUniversity of Prince Edward IslandCharlottetownCanada
  2. 2.Department of PhysicsUniversity of Prince Edward IslandCharlottetownCanada

Personalised recommendations