New Functional Composite Silane-Zeolite Coatings for Adsorption Heat Pump Applications

  • Edoardo Proverbio
  • Luigi CalabreseEmail author
  • Lucio Bonaccorsi
  • Angela Caprì
  • Angelo Freni


The adsorption heat pumps represent an innovative technology to increase the efficiency of thermal energy. To date, this technology requires in-depth analysis in order to increase the overall performance of the equipment. In this context, it is necessary to increase the overall performance of the equipment. The development of multifunctional adsorbent coatings is an important design solution to improve engineering and technology of adsorption heat pumps. Thanks to the use of adsorbent coatings, the heat exchangers and heat pumps can operate more efficiently. These coatings must not only be effective in terms of energy efficiency (thermodynamic and kinetic adsorption properties) but also in terms of mechanical and electrochemical stability. This chapter shows how this problem could be managed through the use of innovative multifunctional composite silane-zeolite coatings. The method proposed in this chapter is based on the deposition, using a hybrid silane binder, of the adsorbent material based on aluminum zeolite. The chemical-physical-mechanical characterization of the composite materials with the purpose to evaluate its industrial applicability is discussed. In particular, adhesion, hydrophobicity, and durability tests were performed. This chapter also highlights how different types of matrices can affect the performance of the coating. The results obtained showed that the performances of the coating were closely related to the interaction between zeolite filler and silane matrix. Furthermore, the type of matrix was an important variable in order to optimize the properties of the composite coating up to its use in the commercial field.


Silane Zeolite Coating Adsorption Heat pump 


  1. 1.
    Strategic Research Priorities for Cross-Cutting Technology (Secretariat of the RHC-Platform, Brussels)Google Scholar
  2. 2.
    Dunne SR (1993) US5667560 AGoogle Scholar
  3. 3.
    Dawoud B, Vedder U, Amer EH, Dunne S (2007) Non-isothermal adsorption kinetics of water vapour into a consolidated zeolite layer. Int J Heat Mass Transf 50:2190Google Scholar
  4. 4.
    van Heyden H, Munz G, Schnabel L, Schmidt F, Mintova S, Bein T (2009) Appl Therm Eng 29:1514CrossRefGoogle Scholar
  5. 5.
    Henninger SK, Schmidt FP, Henning H-M (2010) Appl Therm Eng 30:1692CrossRefGoogle Scholar
  6. 6.
    Kakiuchi H, Shimooka S, Iwade M, Oshima K, Yamazaki M, Terada S, Watanabe H, Takewaki T (2005) KAGAKU KOGAKU RONBUNSHU 31:273CrossRefGoogle Scholar
  7. 7.
    Sapienza A, Santamaria S, Frazzica A, Freni A (2011) Energy 36:5532CrossRefGoogle Scholar
  8. 8.
    Aristov YI, Restuccia G, Cacciola G, Parmon VN (2002) Appl Therm Eng 22:191CrossRefGoogle Scholar
  9. 9.
    Freni A, Sapienza A, Glaznev IS, Aristov YI, Restuccia G (2012) Int J Refrig 35:518CrossRefGoogle Scholar
  10. 10.
    Henninger SK, Jeremias F, Kummer H, Janiak C (2012) Eur J Inorg Chem 2012:2625, (Last Accessed: May 2015)
  11. 11.
    Mugnier D, Jakob U (2015) Wiley Interdiscip Rev Energy Environ 4:229CrossRefGoogle Scholar
  12. 12.
    Pino L, Aristov Y, Cacciola G, Restuccia G (1997) Adsorption 3:33CrossRefGoogle Scholar
  13. 13.
    Dawoud B (2013) Appl Therm Eng 50:1645–1651Google Scholar
  14. 14.
    Bonaccorsi L, Calabrese L, Freni A, Proverbio E, Restuccia G (2013) Appl Therm Eng 50:1590–1595Google Scholar
  15. 15.
    Freni A, Russo F, Vasta S, Tokarev M, Aristov YI, Restuccia G (2007) Appl Therm Eng 27:2200CrossRefGoogle Scholar
  16. 16.
    Pons M, Poyelle F (1999) Int J Refrig 22:27CrossRefGoogle Scholar
  17. 17.
    Critoph RE (1999) Int J Refrig 22:38CrossRefGoogle Scholar
  18. 18.
    Alam KCA, Khan MZI, Uyun AS, Hamamoto Y, Akisawa A, Kashiwagi T (2007) Appl Therm Eng 27:1686CrossRefGoogle Scholar
  19. 19.
    Glaznev IS, Aristov YI (2010) Int J Heat Mass Transf 53:1893CrossRefGoogle Scholar
  20. 20.
    Critoph RE (2012) Int J Refrig 35:490CrossRefGoogle Scholar
  21. 21.
    Bauer J, Herrmann R, Mittelbach W, Schwieger W (2009) Int J Energy Res 33:1233CrossRefGoogle Scholar
  22. 22.
    Okamoto K, Teduka M, Nakano T, Kubokawa S, Kakiuchi H (2010) In: IMPRES Conference (Research Publishing Services), pp 27–32Google Scholar
  23. 23.
    Kawai T, Tsutsumi K (1998) Colloid Polym Sci 276:992CrossRefGoogle Scholar
  24. 24.
    van Ooij WJ, Zhu D, Stacy M, Seth A, Mugada T, Gandhi J, Puomi P (2005) Tsinghua Sci Technol 10:639CrossRefGoogle Scholar
  25. 25.
    Calabrese L, Bonaccorsi L, Caprì A, Proverbio E (2014) Prog Org Coat 77:1341CrossRefGoogle Scholar
  26. 26.
    Calabrese L, Bonaccorsi L, Caprì A, Proverbio E, Coatings J (2014) Technol Res 11:883Google Scholar
  27. 27.
    Zaferani SH, Zaarei D, Danaee I, Mehrabian N (2014) J Adhes Sci Technol 28:151CrossRefGoogle Scholar
  28. 28.
    Frignani A, Zucchi F, Trabanelli G, Grassi V (2006) Corros Sci 48:2258CrossRefGoogle Scholar
  29. 29.
    Wang D, Ni Y, Huo Q, Tallman DE (2005) Thin Solid Films 471:177CrossRefGoogle Scholar
  30. 30.
    Calabrese L, Bonaccorsi L, Capri A, Proverbio E (2014) Metall Ital 106:35Google Scholar
  31. 31.
    van Ooij WJ, Zhu D (2001) Corrosion 57:413CrossRefGoogle Scholar
  32. 32.
    Franquet A, Le Pen C, Terryn H, Vereecken J (2003) Electrochim Acta 48:1245CrossRefGoogle Scholar
  33. 33.
    Zhu D, van Ooij WJ (2003) Corros Sci 45:2177CrossRefGoogle Scholar
  34. 34.
    Palanivel V, Zhu D, van Ooij WJ (2003) Prog Org Coat 47:384CrossRefGoogle Scholar
  35. 35.
    Hatefi A, Mohagheghi S, Kianvash A, Coatings J (2013) Technol Res 10:743Google Scholar
  36. 36.
    Whyman G, Bormashenko E, Stein T (2008) Chem Phys Lett 450:355CrossRefGoogle Scholar
  37. 37.
    Almanza-Workman AM, Raghavan S, Deymier P, Monk DJ, Roop R (2002) J Electrochem Soc 149:H6CrossRefGoogle Scholar
  38. 38.
    Fadeev AY, McCarthy TJ (2000) Langmuir 16:7268CrossRefGoogle Scholar
  39. 39.
    Freni A, Frazzica A, Dawoud B, Chmielewski S, Calabrese L, Bonaccorsi L (2013) Appl Therm Eng 50:1658CrossRefGoogle Scholar
  40. 40.
    Zheludkevich ML, Yasakau KA, Bastos AC, Karavai OV, Ferreira MGS (2007) Electrochem Commun 9:2622CrossRefGoogle Scholar
  41. 41.
    Lee JY, Lee SH, Kim SW (2000) Mater Chem Phys 63:251CrossRefGoogle Scholar
  42. 42.
    Wang SG, Wang RZ, Li XR (2005) Renew Energy 30:1425CrossRefGoogle Scholar
  43. 43.
    Meunier F (1998) Appl Therm Eng 18:715CrossRefGoogle Scholar
  44. 44.
    Bonaccorsi L, Bruzzaniti P, Calabrese L, Freni A, Proverbio E, Restuccia G (2013) Appl Therm Eng 61:848CrossRefGoogle Scholar
  45. 45.
    Vasta S, Giacoppo G, Barbera O, Calabrese L, Bonaccorsi L, Freni A (2014) Innovative zeolite coatings on graphite plates for advanced adsorbers. Appl Therm Eng 72(2):153–159Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edoardo Proverbio
    • 1
  • Luigi Calabrese
    • 1
    Email author
  • Lucio Bonaccorsi
    • 1
  • Angela Caprì
    • 1
  • Angelo Freni
    • 2
  1. 1.Department of Electronic Engineering, Industrial Chemistry and EngineeringUniversity of MessinaMessinaItaly
  2. 2.CNR ITAE98126Italy

Personalised recommendations