Electroactive Polymers and Coatings

  • Lisa C. du Toit
  • Pradeep Kumar
  • Yahya E. Choonara
  • Viness PillayEmail author


Electroactive polymers (EAPs) and coatings (EACs) provide an expanding and progressive frontier for responsive drug delivery and the design of biomedical devices. EAPs possess the distinctive propensity to undergo a change in shape and/or size following electrical current activation. Current interest in EAPs and EACs extends to use in controlled drug delivery applications, where an “on-off” mechanism for drug releases would be optimal, as well as application in a biomedical devices and implants. This chapter explores and molecularly characterizes various EAPs such as polyaniline, polypyrrole, polythiophene, and polyethylene, which can ultimately be incorporated into responsive hydrogels in conjunction with, for example, a desired bioactive, to obtain a stimulus-controlled bioactive release system, which can be actuated by the patient, for enhanced specificity. The institution of hybrids of conducting polymers and hydrogels has also been subjected to increasing investigation as soft EACs, which have been applied, for example, in the improvement of the mechanical and electrical performance of metallic implant electrodes. The various interconnected aspects of EAP-based systems, including their synthesis, proposed modus operandi, physical properties, as well as functionalization approaches for enhancing the performance of these systems, are delineated. The use and comparison of these EAPs and EACs alone, and in conjunction with hydrogels, is further elaborated, together with strategies for integrating electroactive components and hydrogels. Approaches for modeling and explaining the proposed modus operandi of these systems are delineated. A critical review of diverse biomedical systems implementing EAPs and EACs having application in the pharmaceutical and medical industry, specifically, is provided, highlighting their applications, potential advantages, and possible limitations. Ultimately, this chapter illuminates innovative approaches for enabling EAP- and EAC-based systems to attain their full clinical potential.


Electroactive polymers Electroactive coatings Hydrogels Polyelectrolytes Dopant Drug delivery systems Biomedical devices Stimulus responsive 


  1. 1.
    Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353CrossRefGoogle Scholar
  2. 2.
    Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles – reality, potential and challenges, vol PM136, 2nd edn. SPIE Press, Bellingham, WA, pp 1–176CrossRefGoogle Scholar
  3. 3.
    Bar-Cohen Y (2012) Biomimetic muscles and actuators using electroactive polymers (EAP). In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 285–290Google Scholar
  4. 4.
    Lakard B, Ploux L, Anselme K, Lallemand F, Lakard S, Nardin M et al (2009) Effect of ultrasounds on the electrochemical synthesis of polypyrrole, application to the adhesion and growth of biological cells. Bioelectrochemistry 75:148–157CrossRefGoogle Scholar
  5. 5.
    Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:2701–2716CrossRefGoogle Scholar
  6. 6.
    Ateh DD, Navsaria HA, Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 3:741–752CrossRefGoogle Scholar
  7. 7.
    Zhou DD, Cui XT, Hines A, Greenberg RJ (2010) Conducting polymers in neural stimulation applications. In: Zhou DD, Greenbaum E (eds) Implantable neural prostheses, vol 2. Springer, Berlin, pp 217–252CrossRefGoogle Scholar
  8. 8.
    Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921CrossRefGoogle Scholar
  9. 9.
    Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15:2077–2088CrossRefGoogle Scholar
  10. 10.
    Wan M (2008) Introduction of conducting polymers. In: Wan M (ed) Conducting polymers with micro or nanometer structure. Springer, Berlin, pp 1–15Google Scholar
  11. 11.
    Pillay V, Tsai T-S, Choonara YE, du Toit LC, Modi G, Naidoo D, Tomar LK, Tyagi C, Kumar P, Ndesendo VMK (2014) A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications. J Biomat Res A 102:2039–2054Google Scholar
  12. 12.
    Roentgen WC (1880) About the changes in shape and volume of dielectrics caused by electricity, section III. In: Wiedemann G (ed) Annual physics and chemistry series, vol 11, John Ambrosius Barth Publisher. Leipzig, German, pp 771–786 (In German)Google Scholar
  13. 13.
    Park IS, Jung K, Kim DSM, Kim KJ (2008) Physical principles of ionic polymer-metal composites as electroactive actuators and sensors, special issue dedicated to EAP. Mater Res Soc MRS Bull 33:190–195CrossRefGoogle Scholar
  14. 14.
    Madden JDW, Madden PG, Hunter IW (2002) Conducting polymer actuators as engineering materials. In: Bar-Cohen Y (ed) Proceeding of the SPIE smart structures and materials 2002: electroactive polymer actuators and devices (EAPAD). SPIE Press, Bellingham, WA, pp 176–190. doi: 10.1117/12.475163 CrossRefGoogle Scholar
  15. 15.
    Cheng Z, Zhang Q (2008) Field-activated electroactive polymers, special issue dedicated to EAP. Mater Res Soc MRS Bull 33:190–195CrossRefGoogle Scholar
  16. 16.
    Inzelt G, Szabo L (1986) The effect of the nature and the concentration of the counter-ions on the electrochemistry of poly (vinylferrocene) polymer film electrodes. Electrochim Acta 31:1381–1387CrossRefGoogle Scholar
  17. 17.
    Bott AW (2001) Electrochemical techniques for the characterization of redox polymers. Curr Sep 19:71–77Google Scholar
  18. 18.
  19. 19.
    Karyakin AA, Karyakina EE, Schmidt H (1998) Electropolymerized azines: a new group of electroactive polymers. Electroanalysis 11:149–155CrossRefGoogle Scholar
  20. 20.
    Asami R, Atobe M, Fuchigami T (2005) Electropolymerization of an immiscible monomer in aqueous electrolytes using acoustic emulsification. J Am Chem Soc 127:13160–13161CrossRefGoogle Scholar
  21. 21.
    Ali E, Mahmood K, Mansoor K (2006) Electropolymerization of aniline on plastically deformed Pd surface: structure at micro- and nano-scale. Polym J 38:329–334CrossRefGoogle Scholar
  22. 22.
    Wang Z, Kang J, Liu X, Ma Y (2007) Capacitive detection of theophylline based on electropolymerized molecularly imprinted polymer. Int J Polym Anal Charact 12:131–142CrossRefGoogle Scholar
  23. 23.
    Walter MG, Wamser CC (2010) Synthesis and characterization of electropolymerized nanostructured aminophenylporphyrin films. J Phys Chem C 114:7563–7574CrossRefGoogle Scholar
  24. 24.
    Ku CC, Liepins R (1987) Dielectric breakdown in polymers. In: Ku CC, Liepins R (eds) Electrical properties of polymers—chemical principles. Hanser Publishers, Munich, Germany, pp 102–199Google Scholar
  25. 25.
    Ghasemi-Mobarakeh L et al (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35CrossRefGoogle Scholar
  26. 26.
    Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7:S559–S579CrossRefGoogle Scholar
  27. 27.
    Pelto J et al (2010) Electroactivity and biocompatibility of polypyrrolehyaluronic acid multi-walled carbon nanotube composite. J Biomed Mater Res 93A:1056–1067Google Scholar
  28. 28.
    Lyons MEG, Fay HG, McCabe T, Corish J, Vos JG, Kelly AJ (1990) Charge percolation in electroactive polymer films. J Chem Soc Faraday Trans 86:2905–2910CrossRefGoogle Scholar
  29. 29.
    Bar-Cohen Y (2007) Focus issues on biomimetics using electroactive polymers as artificial muscles. Bioinsp Biomim 2:E01CrossRefGoogle Scholar
  30. 30.
    Bidez PR, Li S, Macdiarmid AG, Venancio EC, Wei Y, Lelkes PI (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17:199–212CrossRefGoogle Scholar
  31. 31.
    Wang LX, Soczka-Guth T, Havinga E, Mullen K (2003) Poly(phenylenesulfidephenylenamine) (PPSA)—the “compound” of polyphenylenesulfide with polyaniline. Angew Chem 35:1495–1497CrossRefGoogle Scholar
  32. 32.
    Otero TF, Rodriguez J, Angulo E, Santamaria C (1993) Artificial muscles from bilayer structures. Synth Met 55–57:3713–3717CrossRefGoogle Scholar
  33. 33.
    Della Santa A, De Rossi D, Mazzoldi A (1997) Performance and work capacity of a polypyrrole conducting polymer linear actuator. Synth Met 90:93–100CrossRefGoogle Scholar
  34. 34.
    Kincal D, Kumar A, Child A, Reynolds J (1998) Conductivity switching in polypyrrole-coated textile fabric as gas sensors. Synth Met 92:53–56CrossRefGoogle Scholar
  35. 35.
    Lekpittaya P, Yanumet N, Grady BP (2004) Resistivity of conductive polymer-coated fabric. J Appl Polym Sci 92:2629–2636CrossRefGoogle Scholar
  36. 36.
    Lopes A, Martin S, Moraö A, Magrinho M, Gonçalves I (2004) Degradation of a textile dye, C.I. Direct Red 80 by electrochemical processes. Portug Electrochim Acta 22:79–94CrossRefGoogle Scholar
  37. 37.
    Moschou EA, Peteu SF, Bacha LG, Madou MJ, Daunert S (2004) Artificial muscle material with fast electroactuation under neutral pH conditions. Chem Mater 16:2499–2502CrossRefGoogle Scholar
  38. 38.
    Kenji M, Shunzo S, Makoto U, Katsuhiko N (2000) Synthesis of a novel soluble polyaniline using imide super-acid. Nippon Kagakkai Koen Yokoshu 78:114–119Google Scholar
  39. 39.
    Lindström H, Holmberg A, Magnusson E, Lindquist S, Malmqvist L, Hagfeldt A (2001) A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett 1:97–100CrossRefGoogle Scholar
  40. 40.
    McCarthy PA, Juang J, Yang S, Wang H (2002) Synthesis and characterization of water-soluble chiral conducting polymer nanocomposites. Langmuir 18:259–263CrossRefGoogle Scholar
  41. 41.
    Chao D, Lu X, Chen J, Liu X, Zhang W, Wei Y (2006) Synthesis and characterization of electroactive polyamide with amine-capped aniline pentamer and ferrocene in the main chain by oxidative coupling polymerization. Polymer 47:2643–2648CrossRefGoogle Scholar
  42. 42.
    Palaniappan S, Devi SL (2006) Thermal stability and structure of electroactive polyaniline-fluoroboric acid-dodecylhydrogensulfate salt. Polym Degrad Stab 91:2415–2422CrossRefGoogle Scholar
  43. 43.
    Zhang H, Li HX, Cheng HM (2006) Water-soluble multi-walled carbon nanotubes functionalized with sulphonated polyaniline. J Phys Chem B 110:9095–9099CrossRefGoogle Scholar
  44. 44.
    Huang Y, Yu H, Xiao C (2007) pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release. Carbohydr Polym 69:774–783CrossRefGoogle Scholar
  45. 45.
    Huang L, Hu J, Lang L, Wang X, Zhang P, Jing X, Wang X, Chen X, Lelkes PI, Macdiarmid AG, Wei Y (2007) Synthesis and characterization of electroactive and biodegradagble ABA block copolymer of polylactide and aniline pentamer. Biomaterials 28:1741–1751CrossRefGoogle Scholar
  46. 46.
    Guo B, Finne-Wistrand A, Albertsson A (2011) Versatile functionalization of polyester hydrogels with electroactive aniline oligomers. J Polym Sci Polym Chem 49:2097–2105CrossRefGoogle Scholar
  47. 47.
    Tsai T, Pillay V, Choonara YE, du Toit LC, Modi G, Naidoo D, Kumar P (2011) A polyvinyl alcohol polyaniline based electro-conductive hydrogel for controlled stimuli-actuable release of indomethacin. Polymers 3:150–172CrossRefGoogle Scholar
  48. 48.
    Yin W, Ruckenstein E (2001) A water-soluble self-doped conducting polypyrrole-based copolymer. J Appl Polym Sci 79:86–89CrossRefGoogle Scholar
  49. 49.
    Bae WJ, Kim KH, Jo WH (2005) A water-soluble and self-doping conducting polypyrrole graft copolymer. Macromolecules 38:1044–1047CrossRefGoogle Scholar
  50. 50.
    Ansari R (2006) Polypyrrole conducting electroactive polymers: synthesis and stability studies. E J Chem 3:186–201CrossRefGoogle Scholar
  51. 51.
    Kim J, Deshpande SD, Yun S, Li Q (2006) A comparative study of conductive polypyrrole and polyaniline coatings on electro-active papers. Polym J 38:659–668CrossRefGoogle Scholar
  52. 52.
    Sutar D, Aswal DK, Gupta SK, Yakhmi JV (2007) Electrochemical actuator from conductive electroactive polymer polypyrrole deposited on gold. Indian J Pure Appl Phys 45:354–357Google Scholar
  53. 53.
    Fichou D, Ziegler C (1999) Single crystals and thin films. In: Fichou D (ed) Handbook of oligo- and polythiophenes. Wiley-VCH, Weinheim, Germany, pp 185–282Google Scholar
  54. 54.
    Granstrom M, Harrison MG, Friend RH (1999) Electrooptical polythiophene devices. In: Fichou D (ed) Handbook of oligo- and polythiophenes. Wiley-VCH, Weinheim, Germany, pp 54–58Google Scholar
  55. 55.
    Gnanakan SRP, Rajasekhar M, Subramania A (2009) Synthesis of polythiophene nanparticles by surfactant-assissted dilute polymerization method for high performance redox supercapacitors. Int J Electrochem Sci 4:1289–1301Google Scholar
  56. 56.
    Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. J Phys Chem B 105:8475–8491CrossRefGoogle Scholar
  57. 57.
    Bar-Cohen Y, Kwang J, Kim KJ, Choi HR, Madden JDW (2007) Electroactive polymer materials. Smart Mater Struct 16, E01CrossRefGoogle Scholar
  58. 58.
    Kinoshita Y, Kuzuhara T, Kobayashi M, Ikada Y (1995) Reduction in tumor formation on polyethylene by collagen immobilization. J Long Term Eff Med Implants 5:275–284Google Scholar
  59. 59.
    Sengothi K, Tan P, Wang J, Lee T, Kang ET, Wang HC (1999) Biocompatibility of polyaniline polymers in tissue: Biomaterial surface interactions. In: AIChE annual meetings, Dallas, TXGoogle Scholar
  60. 60.
    Zhao H, Price WE, Too CO, Wallace GG, Zhou D (1996) Parameter influencing transport across conducting electroactive polymer membranes. J Membr Sci 119:199–212CrossRefGoogle Scholar
  61. 61.
    Zhao H, Price WE, Wallace GG (1998) Synthesis, characterization and transport properties of layered conducting electroactive polypyrrole membrane. J Membr Sci 148:161–172CrossRefGoogle Scholar
  62. 62.
    Zhao H, Prince WE, Wallace GG (1994) Effect of counter-ions employed during synthesis on the properties of polypyrrole membranes. J Membr Sci 87:47–56CrossRefGoogle Scholar
  63. 63.
    Cirić-Marjanović G, Dragićević L, Milojević M, Mojović M, Mentus S, Dojćinović B, Marjanović B, Stejskal J (2009) Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposite. J Phys Chem B 113:7116–7127CrossRefGoogle Scholar
  64. 64.
    Sadki S, Schottland P, Brodie N, Sabourand G (2000) The mechanisms of polypyrrole electropolymerization. Chem Soc Rev 29:283–293CrossRefGoogle Scholar
  65. 65.
    Pistoia G, Bagnarelli O, Maiocco M (1978) Evaluation of factors affecting the radical electropolymerization of methylmethacrylate in the presence of HNO3. J Appl Electrochem 9:343–349CrossRefGoogle Scholar
  66. 66.
    Yamada K, Tenshima K, Kobayashi N, Hirohashi R (1997) Electropolymerization of aniline derivatives in non-aqueous solution without a proton donor. J Electroanal Chem 394:71–79CrossRefGoogle Scholar
  67. 67.
    Roeder J, Zucolotto V, Shishatskiy S, Bertolino JR, Nunes SP, Pires ATN (2006) Mixed conductive membrane: Aniline polymerization in an acid SPEEK matrix. J Membr Sci 279:70–75CrossRefGoogle Scholar
  68. 68.
    Hatchett DW, Josowicz M, Janata J (1999) Acid doping of polyaniline: spectroscopic and electrochemical studies. J Phys Chem B 103:10992–10998CrossRefGoogle Scholar
  69. 69.
    Kowalski D, Ueda M, Ohtsuka T (2008) The effect of ultrasonic irradiation during electropolymerization of polypyrrole on corrosive prevention of the coated steel. Corros Sci 50:286–291CrossRefGoogle Scholar
  70. 70.
    Shabani-Nooshabadi M, Ghoreishi SM, Behpour M (2009) Electropolymerized polyaniline coatings on aluminum alloy 3004 and their corrosion protection performance. Electrochim Acta 54:6989–6995CrossRefGoogle Scholar
  71. 71.
    Dimitriev OP (2003) Doping of polyaniline by transition metals: effect of metal cation on film morphology. Synth Mater 142:299–303CrossRefGoogle Scholar
  72. 72.
    Taka T, Laakso J, Levon K (1994) Conductivity and structure of DBSA-protonated polyaniline. Solid State Commun 92:393–396CrossRefGoogle Scholar
  73. 73.
    Mirmohseni A, Wallace GG (2003) Preparation and characterization of processable electroactive polyaniline–poly vinyl alcohol composites. Polymer 44:3523–3528CrossRefGoogle Scholar
  74. 74.
    Palaniappan S, Saravanan C, John A (2005) Emulsion polymerization for preparation of polyaniline-sulfate salt, using non-ionic surfactant. J Macromol Sci Part A 42:891–900CrossRefGoogle Scholar
  75. 75.
    Kinlen PJ, Frushour BG, Ding Y, Menon V (1999) Synthesis and characterization of organically soluble polyaniline and polyaniline block copolymers. Synth Mater 101:758–761CrossRefGoogle Scholar
  76. 76.
    Posadas D, Florit MI (2004) The redox switching of electroactive polymers. J Phys Chem 108:15470–15476CrossRefGoogle Scholar
  77. 77.
    Scampicchio M, Lawrence NS, Arecchi A, Mannino S (2007) Determination of sulphite in wine by linear sweep voltammetry. Electroanalysis 20:444–447CrossRefGoogle Scholar
  78. 78.
    Pathiratne KAS, Skandaraja SS, Jayasena EMCM (2008) Linear sweep voltammetric determination of free chlorines in waters using graphite working electrodes. J Nat Sci Found Sri Lanka 36:25–31Google Scholar
  79. 79.
    Heinze J (2003) Cyclic voltammetry—“electrochemical spectroscopy”: new analytical method. Angew Chem 23:831–847CrossRefGoogle Scholar
  80. 80.
    Fortunato R, Branco LC, Afonso CAM, Benavente J, Crespo JG (2006) Electrical impedance spectroscopy characterization of supported ionic liquid membranes. J Membr Sci 270:42–49CrossRefGoogle Scholar
  81. 81.
    Gabrielli C, Keddam M, Nadi N, Perrot H (2000) Ion and solvent transport across conducting polymers investigated by AC electrogravimetry. Application to polyaniline. J Electroanal Chem 485:101–113CrossRefGoogle Scholar
  82. 82.
    Lyons MEG (1996) Transport and kinetics in electroactive polymers. In: Prigogine I, Rice SA (eds) Advances in chemical physics: polymeric systems, vol 94. Wiley, Hoboken, NJ, Chapter 5CrossRefGoogle Scholar
  83. 83.
    Nguyen TA, Kobot S, Ongarato DM, Wallace GG (1999) The use of chronoamperometry and chemometrics for optimization of conducting polymer sensor arrays. Electroanalysis 11:1327–1332CrossRefGoogle Scholar
  84. 84.
    Peppas NA, Bures CD (2006) Glucose-responsive hydrogels. In: Wnek GE, Bowlin GL (eds) Encyclopedia biomaterials and biomedical engineering. Dekker, New York, NYGoogle Scholar
  85. 85.
    Deng K, Zhang P, Ren X, Zhong H, Gou Y, Dong L, Li Q (2009) Synthesis and characterization of a pH/temperature responsive glycine-mediated hydrogel for drug release. Front Mater Sci China 3:374–379CrossRefGoogle Scholar
  86. 86.
    Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343CrossRefGoogle Scholar
  87. 87.
    Bikram M, Gobin AM, Whitmire RE, West JL (2007) Temperature sensitive-hydrogel with SiO2–Au nanoshells for controlled drug delivery. J Control Release 123:219–227CrossRefGoogle Scholar
  88. 88.
    Westbrook KK, Qi HJ (2008) Actuator designs using environmentally responsive hydrogels. J Intell Mater Syst Struct 19:597–607CrossRefGoogle Scholar
  89. 89.
    Park C, Orozco-Avila I (2008) Concentrating cellulose from fermented broth using a temperature sensitive hydrogel. Biotechnol Prog 8:521–526CrossRefGoogle Scholar
  90. 90.
    You J, Auguste DT (2010) Conductive, physiologically responsive hydrogels. Langmuir 26:4607–4612CrossRefGoogle Scholar
  91. 91.
    Qui Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–329CrossRefGoogle Scholar
  92. 92.
    Murdan S (2003) Electro-responsive drug delivery from hydrogel. J Control Release 93:1–17CrossRefGoogle Scholar
  93. 93.
    Li H, Yuan Z, Lam KY, Lee HP, Chen J, Hanes J, Fu J (2004) Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosens Bioelectron 19:1097–1107CrossRefGoogle Scholar
  94. 94.
    Li L, Huang C (2007) Electrochemical/electrospray mass spectrometric studies of electrochemically stimulated ATP release from PP/ATP films. J Am Mass Spectrom 18:919–926CrossRefGoogle Scholar
  95. 95.
    Luo R, Li H, Birgersson E, Lam KY (2008) Modeling of electric-stimulus responsive hydrogels immersed in different bathing solutions. J Biomed Mater Res 85A:248–257CrossRefGoogle Scholar
  96. 96.
    Brahim S, Guiseppi-Elie A (2004) Electroconductive hydrogels: electrical and electrochemical properties of polypyrrole-poly (HEMA) composite. Electroanalysis 17:556–570CrossRefGoogle Scholar
  97. 97.
    Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S (2005) Genetically engineered protein in hydrogels tailors stimuli-responsive characters. Nat Mater 4:298–302CrossRefGoogle Scholar
  98. 98.
    Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769CrossRefGoogle Scholar
  99. 99.
    Pernaut J, Reynolds JR (2000) Use of conducting electroactive polymers for drug delivery and sensing of a bioactive molecular. A redox chemistry approach. J Phys Chem B 104:4080–4090CrossRefGoogle Scholar
  100. 100.
    Zinger B, Miller LL (1984) Timed release of chemicals from polypyrrole films. J Am Chem Soc 106:6861–6863CrossRefGoogle Scholar
  101. 101.
    Pyo M, Reynolds JR (1994) Electrochemically stimulated adenosine 5′-triphosphate (ATP) release through redox switching of conducting polypyrrole films and bilayers. Chem Mater 8:128–133CrossRefGoogle Scholar
  102. 102.
    Otero TF, Padilla J (2004) Anodic shrinking and compaction of polypyrrole blend: electrochemical reduction under conformational relaxation kinetic control. J Electroanal Chem 561:167–171CrossRefGoogle Scholar
  103. 103.
    Moina YG, Andrade C, Molina EM, Florit FV, Rodríguez Presa MI, Posada MJ (2003) Conformational changes during the redox switching of electroactive polymers. J Argentine Chem Soc 91:119–134Google Scholar
  104. 104.
    Silk T, Tamm J (1996) Voltammetric study of the influence of cations on the redox switching process of halogenide-doped polypyrrole. Electrochim Acta 41:1883–1885CrossRefGoogle Scholar
  105. 105.
    Li L, Hsieh Y (2005) Ultra-fine polyelectrolyte hydrogel fibres from poly (acrylic acid)/poly (vinyl alcohol). Nanotechnology 16:2852–2860CrossRefGoogle Scholar
  106. 106.
    Wang Y, Shen Y, Zhang Y, Yue B, Wu C (2006) pH-sensitive poly acrylic acid (PAA) hydrogels trapped with polysodium-p-styrenesulfonate (PSS). J Macromol Sci Part B 45:563–571CrossRefGoogle Scholar
  107. 107.
    Adnadjevic B, Jovanovic J (2007) Novel approach in investigation of the poly (acrylic acid) hydrogel swelling kinetics in water. J Appl Polym Sci 107:3579–3587CrossRefGoogle Scholar
  108. 108.
    Chansai P, Sirivat A (2008) Electrical field responsive polypyrrole in poly(acrylic acid) hydrogel for transdermal drug delivery. Adv Sci Technol 57:170–175CrossRefGoogle Scholar
  109. 109.
    Sutani K, Kaetsu I, Uchida K (2001) The synthesis and the electric-responsiveness of hydrogel entrapping natural polyelectrolyte. Radiat Phys Chem 61:49–54CrossRefGoogle Scholar
  110. 110.
    Gao F, Reitz FB, Pollack GH (2003) Potentials in anionic polyelectrolyte hydrogel. J Appl Polym Sci 89:1319–1321CrossRefGoogle Scholar
  111. 111.
    Kulkarni RV, Sa B (2009) Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioact Compat Polym 24:368–384CrossRefGoogle Scholar
  112. 112.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12CrossRefGoogle Scholar
  113. 113.
    Francis S, Kumar M, Varshney L (2004) Radiation synthesis of superabsorbent poly (acrylic-acid)-carrageenan hydrogels. Radiat Phys Chem 69:481–486CrossRefGoogle Scholar
  114. 114.
    Rokhade AP, Patil SA, Aminabhavi TB (2007) Synthesis and characterization of semi-interpenetrating polymer network microsphere of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 6:605–613CrossRefGoogle Scholar
  115. 115.
    Pawde SM, Deshmukh K (2008) Characterization of poly vinyl alcohol/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci 109:3431–3437CrossRefGoogle Scholar
  116. 116.
    Sui K, Gao S, Wu W, Xia Y (2010) Injectable supermolecular hybrid hydrogels formed by MWNT-grafted-poly ethylene glycol and α-cyclodextrin. J Polym Sci 48:3145–3151CrossRefGoogle Scholar
  117. 117.
    Prashantha KV (2001) IPNs based on polyol modified castor oil polyurethane and poly (HEMA): synthesis, chemical, mechanical and thermal properties. Bull Mater Sci 24:535–538CrossRefGoogle Scholar
  118. 118.
    Lü S, Liu M, Ni B, Gao C (2010) A novel pH- and thermo-sensitive PVP/CMC semi-IPN hydrogel: swelling, phase behavior, and drug release study. J Polym Sci B Polym Phys 48:1749–1756CrossRefGoogle Scholar
  119. 119.
    You J, Almeda D, Ye GJC, Auguste DT (2010) Bioresponsive matrices in drug delivery. J Biol Eng 4:15CrossRefGoogle Scholar
  120. 120.
    Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron 14:443–456CrossRefGoogle Scholar
  121. 121.
    Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805CrossRefGoogle Scholar
  122. 122.
    Arora K et al (2006) Application of electrochemically prepared polypyrrole–polyvinyl sulphonate films to DNA biosensor. Biosens Bioelectron 21:1777–1783CrossRefGoogle Scholar
  123. 123.
    Nien PC, Tung TS, Hoa KC (2006) Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film. Electroanalysis 18:1408–1415CrossRefGoogle Scholar
  124. 124.
    Prabhakar N, Arora K, Singh SP, Singh H, Malhotra BD (2007) DNA entrapped polypyrrole–polyvinyl sulfonate film for application to electrochemical biosensor. Anal Biochem 366:71–79CrossRefGoogle Scholar
  125. 125.
    De Giglio E, Sabbatini L, Zambonin PG (1999) Development and analytical characterization of cysteine-grafted polypyrrole films electrosynthesized on Pt and Ti-substrates as precursors of bioactive interfaces. Biomater Sci Polym 10:845–858CrossRefGoogle Scholar
  126. 126.
    Cortés MT, Moreno JC (2003) Artificial muscles based on conducting polymers. e-Polymers 4:1–42Google Scholar
  127. 127.
    Ghasemi-Mobarakeh L et al (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35CrossRefGoogle Scholar
  128. 128.
    Stauffer WR, Cui XT (2006) Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials 27:2405–2413CrossRefGoogle Scholar
  129. 129.
    Zhang L, Stauffer WR, Jane EP, Sammak PJ, Cui XT (2010) Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole. Macromol Biosci 10:1456–1464CrossRefGoogle Scholar
  130. 130.
    Gomez N, Lee JY, Nickels JD, Schmidt CE (2007) Micropatterned polypyrrole: a combination of electrical and topographical characteristics for the dtimulation of cells. Adv Funct Mater 17:1645–1653CrossRefGoogle Scholar
  131. 131.
    Li J, Stachowski M, Zhang Z (2015) Application of responsive polymers in implantable medical devices and biosensors. In: Zhang Z (ed) Switchable and responsive surfaces and materials for biomedical applications, Chapter 11. Elsevier, eBook, pp 259–298Google Scholar
  132. 132.
    Li Y, Neoh NG, Kang ET (2005) Controlled release of heparin from polypyrrole–poly(vinyl alcohol) assembly by electrical stimulation. J Biomed Mater Res 73A:171–181CrossRefGoogle Scholar
  133. 133.
    Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110:531–541CrossRefGoogle Scholar
  134. 134.
    Miller LL, Zhou XU (1987) Poly(N-methylpyrrolylium) poly(styrenesu1fonate). A conductive, electrically switchable cation exchanger that cathodically binds and anodically releases dopamine. Macromolecules 20:1594–1597CrossRefGoogle Scholar
  135. 135.
    Kontturi K, Pentti P, Sundholm G (1998) Polypyrrole as a model membrane for drug delivery. J Electroanal Chem 453:231–238CrossRefGoogle Scholar
  136. 136.
    Massoumi B, Entezami AA (2002) Electrochemically stimulated 2-ethylhexyl phosphate (EHP) release through redox switching of conducting polypyrrole film and polypyrrole/poly(N-methylpyrrole) or self-doped polyaniline bilayers. Polym Int 51:555–560CrossRefGoogle Scholar
  137. 137.
    Gomez N, Schmidt CE (2007) Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A 81:135–149CrossRefGoogle Scholar
  138. 138.
    Lira LM, Cordoba de Torresi SI (2005) Conducting polymer-hydrogel composites for electrochemical release device: synthesis and characterization of semi-interpenetrating polyaniline-polyacrylamide network. Electrochem Commun 7:717–723CrossRefGoogle Scholar
  139. 139.
    George PM, LaVan DA, Burdick JA, Chen CY, Liang E, Langer R (2006) Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv Mater 18:577–581CrossRefGoogle Scholar
  140. 140.
    Zhou Q, Miller LL, Valentine JR (1989) Electrochemically controlled binding and release of protonated dimethyldopamine and other cations from poly(N-methyl-pyrrole)/polyanion composite redox polymer. J Electroanal Chem 261:147–167CrossRefGoogle Scholar
  141. 141.
    Pyo M, Reynolds JR (1995) Poly(pyrrole adenosine 5-triphosphate) (PP-ATP) and conducting polymer bilayers for transport of biologically active ions. Synth Mater 71:2233–2236CrossRefGoogle Scholar
  142. 142.
    Kanokpom J, Sumonman N, Ratanaa R, Anuvat S (2008) Electrically controlled release of sulfosalicyclic acid from crosslinked poly (vinyl alcohol) hydrogel. Int J Pharm 356:1–11CrossRefGoogle Scholar
  143. 143.
    Katchalsky A (1964) Polyelectrolytes and their biological interactions. Biophys J 4:9–41CrossRefGoogle Scholar
  144. 144.
    Sorenson MH, Samoshina Y, Claesson P, Alberius P (2009) Sustained release of ibuprofen from polyelectrolyte encapsulated mesoporous carrier. J Disper Sci Technol 30:892–902CrossRefGoogle Scholar
  145. 145.
    Budtova T, Suleimenov I, Frenkel S (1995) Electrokinetics of the contraction of a polyelectrolyte hydrogel under the influence of constant electric current. Polym Gels Netw 3:387–393CrossRefGoogle Scholar
  146. 146.
    Shang J, Shao Z, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9:1208–1213CrossRefGoogle Scholar
  147. 147.
    Grieshaber D, Vörös J, Zambelli T, Ball V, Schaaf P, Voegel JC, Boulmedais F (2008) Swelling and contraction of ferrocyanide-containing polyelectrolyte multilayers upon application of an electric potential. Langmuir 24:13668–13676CrossRefGoogle Scholar
  148. 148.
    Schreyer HB, Gebhart N, Kim KJ, Shahinpoor M (2000) Electrical activation of artificial muscles containing polyacrylonitrile gel fibers. Biomacromolecules 1:642–647CrossRefGoogle Scholar
  149. 149.
    Inoue T, Chen G, Nakamae K, Hoffman AS (1997) A hydrophobically-modified bioadhesive polyelectrolyte gel for drug delivery. J Control Release 49:167–176CrossRefGoogle Scholar
  150. 150.
    Guimard NKE, Sessler JL, Schmidt CE (2009) Toward a biocompatible and biodegradable copolymer incorporating electroactive oligothiophene units. Macromolecules 42:502–511CrossRefGoogle Scholar
  151. 151.
    Sohn K, Shih SR, Park SJ, Kim SJ, Yi B, Han SY, Kim SI (2007) Hysteresis in a carbon nanotube based electroactive polymer microfiber actuator: numerical modeling. J Nanosci Nanotechnol 7:3974–3979CrossRefGoogle Scholar
  152. 152.
    Kornbluh R, Sommer-Larsen P, De Rossi D, Alici G (2011) Guest editorial introduction to the focused section on electroactive polymer mechatronics. IEEE/ASME Trans Mechatron 16:1–8CrossRefGoogle Scholar
  153. 153.
    Thompson BC, Moulton SE, Ding J, Richardson R, Cameron A, O’Leary S, Wallace GG, Clark GM (2006) Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. J Control Release 116:285–294CrossRefGoogle Scholar
  154. 154.
    Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110:531–541CrossRefGoogle Scholar
  155. 155.
    Thompson BC, Richardson RT, Moulton SE, Evans AJ, O’Leary S, Clark GM, Wallace GG (2010) Conducting polymers, dual neurotrophins and pulsed electrical stimulation—dramatic effects on neurite outgrowth. J Control Release 141:161–167CrossRefGoogle Scholar
  156. 156.
    Sharma M, Waterhouse GI, Loader SW, Garg S, Svirskis D (2013) High surface area polypyrrole scaffolds for tunable drug delivery. Int J Pharm 443:163–168CrossRefGoogle Scholar
  157. 157.
    Chansai P, Sirivat A, Niamlang S, Chotpattananont D, Viravaidya-Pasuwat K (2009) Controlled transdermal iontophoresis of sulfosalicylic acid from polypyrrole/poly(acrylic acid) hydrogel. Int J Pharm 381:25–33CrossRefGoogle Scholar
  158. 158.
    Esrafilzadeh D, Razal JM, Moulton SE, Stewart EM, Wallace GG (2013) Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. J Control Release 169:313–320CrossRefGoogle Scholar
  159. 159.
    Niamlang S, Sirivat A (2009) Electrically controlled release of salicylic acid from poly(p-phenylene vinylene)/polyacrylamide hydrogels. Int J Pharm 371:126–133CrossRefGoogle Scholar
  160. 160.
    Spizzirri UG, Hampel S, Cirillo G, Nicoletta FP, Hassan A, Vittorio O, Picci N, Iemma F (2013) Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems. Int J Pharm 448:115–122CrossRefGoogle Scholar
  161. 161.
    Tanaka Y, Fujikawa T, Kazoe Y, Kitamori T (2013) An active valve incorporated into a microchip using a high strain electroactive polymer. Sens Actuators B Chem 84:163–169CrossRefGoogle Scholar
  162. 162.
    Biddiss E, Chau T (2006) Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite. Medical Eng Phys 28:568–578CrossRefGoogle Scholar
  163. 163.
    Bar-Cohen Y (2001) EAP applications, potential, and challenges. In: Bar-Cohen Y (ed) Electroactive polymer (EAP) actuators as artificial muscles. SPIE Press, Bellingham, WA, pp 616–655Google Scholar
  164. 164.
    Riley PJ, Wallace GG (1991) Intelligent chemical systems based on conductive electroactive polymers. J Intell Mater Syst Struct 2:228–238CrossRefGoogle Scholar
  165. 165.
    Keshavarzi A, Shahinpoor M, Kim KJ, Lantz J (1999) Blood pressure, pulse rate, and rhythm measurement using ionic polymer–metal composites sensors. In: Bar-Cohen Y (ed) Proceedings of SPIE—The International Society for Optical Engineering, vol 3669., pp 369–376Google Scholar
  166. 166.
    Gómez-Romero P (2001) Hybrid organic–inorganic materials. In search of synergic activity. Adv Mater 13:3CrossRefGoogle Scholar
  167. 167.
    Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622CrossRefGoogle Scholar
  168. 168.
    Rajesh B, Thampi KR, Bonard JM, Mathieu HJ, Xanthopoulos M, Viswanathan B (2005) Electronically conducting hybrid material as high performance catalyst support for electrocatalytic application. J Power Sources 141:35–38CrossRefGoogle Scholar
  169. 169.
    Xia H, Cheng D, Xiao C, Chan HSO (2005) Controlled synthesis of polyaniline nanostructures with junctions using in situ self-assembly of magnetic nanoparticles. J Mater Chem 15:4161–4166CrossRefGoogle Scholar
  170. 170.
    Leroux Y, Eang E, Fave C, Trippe G, Lacroix JC (2007) Conducting polymer/gold nanoparticle hybrid materials: a step toward electroactive plasmonic devices. Electrochem Commun 9:1258–1262CrossRefGoogle Scholar
  171. 171.
    Rajesh, Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B 136:275–286CrossRefGoogle Scholar
  172. 172.
    Chen L, Sun LJ, Luan F, Li Y, Liu X (2010) Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J Power Sources 195:3742–3747CrossRefGoogle Scholar
  173. 173.
    Fu Y, Manthiram A (2012) Core–shell structured sulfur–polypyrrole composite cathodes for lithium–sulfur batteries. RSC Adv 2:5927–5929CrossRefGoogle Scholar
  174. 174.
    Khosla A (2012) Nanoparticle-doped electrically-conducting polymers for flexible nano-micro systems. Electrochem Soc Int (Fall-Winter): 67–70Google Scholar
  175. 175.
    Chen H, Dong W, Ge J, Wang C, Wu H, Lu W et al (2013) Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep 3:1910Google Scholar
  176. 176.
    Moral-Vicoa J, Sánchez-Redondo S, Lichtenstein MP, Suñol C, Casañ-Pastor N (2014) Nanocomposites of iridium oxide and conducting polymers as electroactive phases in biological media. Acta Biomater 10:2177–2186CrossRefGoogle Scholar
  177. 177.
    Göbbels K, Kuenzel T, Van Ooyen A, Baumgartner W, Schnakenberg U, Bräunig P (2010) Neuronal cell growth on iridium oxide. Biomaterials 31:1055–1067CrossRefGoogle Scholar
  178. 178.
    Cruz AM, Casañ-Pastor N (2013) Graded conducting titanium–iridium oxide coatings for bioelectrodes in neural systems. Thin Solid Films 534:316–324CrossRefGoogle Scholar
  179. 179.
    Prats-Alfonso E, Abad L, Casañ-Pastor N, Gonzalo-Ruiz J, Baldrich E (2013) Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples. Biosens Bioelectron 39:163–169CrossRefGoogle Scholar
  180. 180.
    Cai W, Gong X, Cao Y (2010) Polymer solar cells: recent development and possible routes for improvement in the performance. Sol Energy Mater Sol Cells 94:114–127CrossRefGoogle Scholar
  181. 181.
    Makris T, Dracopoulos V, Stergiopoulos T, Lianos T (2011) A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim Acta 56:2004–2008CrossRefGoogle Scholar
  182. 182.
    Dietsch B, Tong T (2007) A review—features and benefits of shape memory polymers (SMPs). J Adv Mater 39:3–12Google Scholar
  183. 183.
    Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269CrossRefGoogle Scholar
  184. 184.
    Liu YJ, Lv HB, Lan X, Leng JS, Du SY (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 209(69):2064–2068CrossRefGoogle Scholar
  185. 185.
    Raja M, Ryu SH, Shanmugharaj AM (2013) Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. Eur Polym J 49:3492–3500CrossRefGoogle Scholar
  186. 186.
    Leng JS, Lv HB, Liu YJ, Du SY (2008) Synergistic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity. J Appl Phys 104:104917CrossRefGoogle Scholar
  187. 187.
    Leng JS, Lan X, Liu YJ, Du SY, Huang WM, Liu N et al (2008) Electrical conductivity of thermoresponsive shape-memory polymer embedded micron sized Ni powder chains. Appl Phys Lett 92:014104CrossRefGoogle Scholar
  188. 188.
    Gunes IS, Jimenez GA, Jana SC (2009) Carbonaceous fillers for shape memory actuation of polyurethane composites by resistive heating. Carbon 47:981–997CrossRefGoogle Scholar
  189. 189.
    Koerner H, Price G, Pearce NA (2004) Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120CrossRefGoogle Scholar
  190. 190.
    Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRefGoogle Scholar
  191. 191.
    Hiljanen-Vainio M, Kylma J, Hiltunen K, Seppala JV (1997) Rubber toughening of poly(lactide) by blending and block copolymerization. J Appl Polym Sci 63:1335–1343CrossRefGoogle Scholar
  192. 192.
    Wang X-L, Oh I-K, Lee S (2010) Electroactive artificial muscle based on crosslinked PVA/SPTES. Sens Actuators B Chem 150:57–64CrossRefGoogle Scholar
  193. 193.
    Baek S, Green R, Granville A, Martensa P, Poole-Warrena L (2013) Thin film hydrophilic electroactive polymer coatings for bioelectrodes. J Mater Chem B 1:3803CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lisa C. du Toit
    • 1
  • Pradeep Kumar
    • 1
  • Yahya E. Choonara
    • 1
  • Viness Pillay
    • 1
    Email author
  1. 1.Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandParktownSouth Africa

Personalised recommendations