Smart Polymer Nanoparticles for High-Performance Water-Based Coatings

  • José Paulo S. FarinhaEmail author
  • Susana Piçarra
  • Carlos Baleizão
  • J. M. G. Martinho


The increasing pressure to reduce the use of volatile organic compounds (VOCs) within the coatings industry has led to the development of waterborne systems. Water-dispersed polymer nanoparticles (i.e., latex) have been successfully used to this end, but the resulting films usually present less strength, hardness, and resistance to chemicals than solvent-borne coatings. A method to enhance the properties of these films is through chemical polymer chain cross-linking when the film is formed. This approach requires a careful balance of the cross-linking reaction rate and the polymer diffusion rate across the initial nanoparticle boundaries, and it has been extensively studied and used in industrial coatings. Herein, waterborne coatings based on reactive polymer nanoparticles and the first attempts to use “smart” polymer nanoparticles where the cross-linking is triggered by a stimulus which occurs after the desired extent of interdiffusion are reviewed. Different types of cross-linking that have the potential to be used in smart waterborne coatings, involving functional groups such as alkoxysilanes, carboxylic acids, carbodiimide, aziridine, isocyanates, and polyols, where the trigger can be a change in pH, temperature, or water content, are also discussed.


Waterborne coatings Reactive latex Smart nanoparticles Polymer dispersions 


  1. 1.
    Mohammadi N, Klein A, Sperling LH (1993) Polymer chain rupture and the fracture behavior of glassy polystyrene. Macromolecules 26:1019–1026CrossRefGoogle Scholar
  2. 2.
    Kim KD, Sperling LH, Klein A, Hammouda B (1994) Reptation time, temperature, and cosurfactant effects on the molecular interdiffusion rate during polystyrene latex film formation. Macromolecules 27:6841–6850CrossRefGoogle Scholar
  3. 3.
    Eckersley ST, Rudin A (1990) Mechanism of film formation from polymer latexes. J Coat Technol 62:89–100Google Scholar
  4. 4.
    Steward PA, Hearn J, Wilkinson MC (2000) An overview of polymer latex film formation and properties. Adv Colloid Interface Sci 86:195–267CrossRefGoogle Scholar
  5. 5.
    Berrisford DJ, Lovell PA, Suliman NA, Whitting A (2005) Latent reactive groups unveiled through equilibrium dynamics and exemplified in crosslinking during film formation from aqueous polymer colloids. Chem Commun 47:5904–5906CrossRefGoogle Scholar
  6. 6.
    Bufkin BG, Grawe JR (1978) Survey of applications, properties, and technology of crosslinking emulsions. J Coat Technol 50:41–55Google Scholar
  7. 7.
    Aradian A, Raphaël E, de Gennes P-G (2002) A scaling theory of the competition between interdiffusion and cross-linking at polymer interfaces. Macromolecules 35:4036–4043CrossRefGoogle Scholar
  8. 8.
    Aradian A, Raphäel E, de Gennes P-G (2000) Strengthening of a polymer interface: interdiffusion and cross-linking. Macromolecules 33:9444–9451CrossRefGoogle Scholar
  9. 9.
    de Gennes P-G (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579CrossRefGoogle Scholar
  10. 10.
    Doi M, Edwards SF (1986) The theory of polymer dynamics, 1st edn. Clarendon, OxfordGoogle Scholar
  11. 11.
    Hahn K, Ley G, Oberthur R (1988) On particle coalescence in latex films (II). Colloid Polym Sci 266:631–639CrossRefGoogle Scholar
  12. 12.
    Hahn K, Ley G, Schuller H, Oberthur R (1986) On particle coalescence in latex films. Colloid Polym Sci 264:1092–1096CrossRefGoogle Scholar
  13. 13.
    Yoo JN, Sperling LH, Glinka CJ, Klein A (1990) Characterization of film formation from polystyrene latex particles via SANS. 1. Moderate molecular weight. Macromolecules 23:3962–3967CrossRefGoogle Scholar
  14. 14.
    Yoo JN, Sperling LH, Glinka CJ, Klein A (1991) Characterization of film formation from polystyrene latex particles via SANS. 2. High molecular weight. Macromolecules 24:2868–2876CrossRefGoogle Scholar
  15. 15.
    Morawetz H (1979) Some applications of fluorimetry to synthetic polymer studies. Science 203:405–410CrossRefGoogle Scholar
  16. 16.
    Morawetz H (1988) Studies of synthetic polymers by nonradiative energy transfer. Science 240:172–176CrossRefGoogle Scholar
  17. 17.
    Morawetz H (1999) On the versatility of fluorescence techniques in polymer research. J Polym Sci A Polym Chem 37:1725–1735CrossRefGoogle Scholar
  18. 18.
    Winnik MA (1997) Latex film formation. Curr Opin Colloid Interface Sci 2:192–199CrossRefGoogle Scholar
  19. 19.
    Taylor JW, Winnik MA (2004) Functional latex and thermoset latex films. JCT Res 1:163–190Google Scholar
  20. 20.
    Wang YC, Zhao CL, Winnik MA (1991) Molecular diffusion and latex film formation: an analysis of direct nonradiative energy transfer experiments. J Chem Phys 95:2143–2153CrossRefGoogle Scholar
  21. 21.
    Baumann J, Fayer MD (1986) Excitation transfer in disordered two‐dimensional and anisotropic three‐dimensional systems: effects of spatial geometry on time‐resolved observables. J Chem Phys 85:4087–4107CrossRefGoogle Scholar
  22. 22.
    Klafter J, Blumen A (1984) Fractal behavior in trapping and reaction. J Chem Phys 80:875–877CrossRefGoogle Scholar
  23. 23.
    Drake JM, Klafter J, Levitz P (1991) Chemical and biological microstructures as probed by dynamic processes. Science 251:1574–1579CrossRefGoogle Scholar
  24. 24.
    Farinha JPS, Martinho JMG, Kawaguchi SK, Yekta A, Winnik MA (1996) Latex film formation probed by nonradiative energy transfer: effect of grafted and free poly(ethylene oxide) on a poly(n-butyl methacrylate) latex. J Phys Chem 100:12552–12558CrossRefGoogle Scholar
  25. 25.
    Farinha JPS, Martinho JMG, Yekta A, Winnik MA (1995) Direct nonradiative energy transfer in polymer interphases: fluorescence decay functions from concentration profiles generated by fickian diffusion. Macromolecules 28:6084–6088CrossRefGoogle Scholar
  26. 26.
    Yekta A, Duhamel J, Winnik MA (1995) Dipole-dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors: systems with planar geometry. Chem Phys Lett 235:119–125CrossRefGoogle Scholar
  27. 27.
    Farinha JPS, Martinho JMG (2008) Resonance energy transfer in polymer nanodomains. J Phys Chem C 112:10591–10601CrossRefGoogle Scholar
  28. 28.
    Ye X, Farinha JPS, Oh JK, Winnik MA, Wu C (2003) Polymer diffusion in PBMA latex films using a polymerizable benzophenone derivative as an energy transfer acceptor. Macromolecules 36:8749–8760CrossRefGoogle Scholar
  29. 29.
    Wang Y, Winnik MA (1993) Polymer diffusion across interfaces in latex films. J Phys Chem 97:2507–2515CrossRefGoogle Scholar
  30. 30.
    Feng J, Winnik MA (1997) Effect of water on polymer diffusion in latex films. Macromolecules 30:4324–4331CrossRefGoogle Scholar
  31. 31.
    Kawaguchi S, Odrobina E, Winnik MA (1995) Nonionic surfactant effects on polymer diffusion in poly(butyl methacrylate) latex films. Macromol Rapid Commun 16:861–868CrossRefGoogle Scholar
  32. 32.
    Winnik MA, Wang YC, Haley F (1992) Latex film formation at the molecular-level—the effect of coalescing aids on polymer diffusion. J Coat Technol 64:51–61Google Scholar
  33. 33.
    Juhué D, Wang YC, Winnik MA (1993) Influence of a coalescing aid on polymer diffusion in poly(butyl methacrylate) latex films. Makromol Chem Rapid Commun 14:345–349CrossRefGoogle Scholar
  34. 34.
    Kim HB, Winnik MA (1994) Effect of surface acid group neutralization on interdiffusion rates in latex films. Macromolecules 27:1007–1012CrossRefGoogle Scholar
  35. 35.
    Kim HB, Winnik MA (1995) Factors affecting interdiffusion rates in films prepared from latex particles with a surface rich in acid groups and their salts. Macromolecules 28:2033–2041CrossRefGoogle Scholar
  36. 36.
    Tsutomu M, Koji A, Masatoshi M, Yoshiharu K (2006) Application of silica-containing nano-composite emulsion to wall paint: a new environmentally safe paint of high performance. Prog Org Coat 55:276–283CrossRefGoogle Scholar
  37. 37.
    Kobayashi M, Rharbi Y, Brauge L, Cao L, Winnik MA (2002) Effect of silica as fillers on polymer interdiffusion in poly(butyl methacrylate) latex films. Macromolecules 35:7387–7399CrossRefGoogle Scholar
  38. 38.
    Mitsuru W, Toshiyuki T (2006) Acrylic polymer/silica organic–inorganic hybrid emulsions for coating materials: role of the silane coupling agent. J Polym Sci A Polym Chem 44:4736–4742CrossRefGoogle Scholar
  39. 39.
    Ribeiro T, Fedorov A, Baleizão C, Farinha JPS (2013) Formation of hybrid films from perylenediimide-labeled core–shell silica–polymer nanoparticles. J Colloid Interface Sci 401:14–22CrossRefGoogle Scholar
  40. 40.
    Zosel A, Ley G (1993) Influence of crosslinking on structure, mechanical properties, and strength of latex films. Macromolecules 32:2222–2227CrossRefGoogle Scholar
  41. 41.
    Martinho JMG, Farinha JPS (2013) Fluorescence decay methods in the characterization of latex film formation. JCT Coat Technol 10:46–53Google Scholar
  42. 42.
    Pham HH, Farinha JPS, Winnik MA (2000) Cross-linking, miscibility, and interface structure in blends of poly(2-ethylhexyl methacrylate) copolymers: an energy transfer study. Macromolecules 33:5850–5862CrossRefGoogle Scholar
  43. 43.
    Winnik MA (2002) Interdiffusion and crosslinking in thermoset latex films. J Coat Technol 74:49–63CrossRefGoogle Scholar
  44. 44.
    Feng J, Pham HH, Macdonald P, Winnik MA, Geurts JM, Zirkzee H, van Es S, German AL (1998) Formation and crosslinking of latex films through the reaction of acetoacetoxy groups with diamines under ambient conditions. J Coat Technol 70:57–68CrossRefGoogle Scholar
  45. 45.
    Pham HH, Winnik MA (2000) Synthesis, characterization, and stability of carbodiimide groups in carbodiimide-functionalized latex dispersions and films. J Polym Sci A Polym Chem 38:855–869CrossRefGoogle Scholar
  46. 46.
    Liu R, Winnik MA, Di Stefano F, Venkatesan J (2001) Interdiffusion vs. Cross-linking rates in isobutoxyacrylamide-containing latex coatings. Macromolecules 34:7306–7314Google Scholar
  47. 47.
    Tronc F, Liu R, Winnik MA, Eckersley ST, Rose GD, Weishun JM, Meunier DM (2002) Epoxy-functionalized, low glass-transition temperature latex. I. Synthesis, characterizations, and polymer interdiffusion. J Polym Sci A Polym Chem 40:2609–2625CrossRefGoogle Scholar
  48. 48.
    Winnik MA, Pinenq P, Krüger C, Zhang J, Yaneff PV (1999) Crosslinking vs. interdiffusion rates in melamine-formaldehyde cured latex coatings: A model for waterborne automotive basecoat. J Coat Technol 71:47–60CrossRefGoogle Scholar
  49. 49.
    Tronc F, Chen W, Winnik MA, Eckersley ST, Rose GD, Weishun JM, Meunier DM (2002) Epoxy-Functionalized, Low-Glass-Transition-Temperature Latex. II. Interdiffusion versus Crosslinking in the Presence of a Diamine. J Polym Sci A Polym Chem 40:4098–4116CrossRefGoogle Scholar
  50. 50.
    Krishnan S, Klein A, El-Aasser MS, Sudol ED (2003) Influence of chain transfer agent on the cross-linking of poly(n-butyl methacrylate-co-nmethylol acrylamide) latex particles and films. Macromolecules 36:3511–3518CrossRefGoogle Scholar
  51. 51.
    Mazuel F, Bui C, Charleux B, Cabet-Deliry E, Winnik MA (2004) Interdiffusion and self-cross-linking in acetal-functionalized latex films. Macromolecules 37:6141–6152CrossRefGoogle Scholar
  52. 52.
    Mohammed S, Daniels ES, Sperling LH, Klein A, El-Aasser MS (1997) Isocyanate-functionalized latexes: film formation and tensile properties. J Appl Polym Sci 66:1869–1884CrossRefGoogle Scholar
  53. 53.
    Liu X, Fan X-D, Tang M-F, Nie Y (2008) Synthesis and characterization of core-shell acrylate based latex and study of its reactive blends. Int J Mol Sci 9:342–354CrossRefGoogle Scholar
  54. 54.
    Tungchaiwattana S, Groves R, Lovell PA, Pinprayoonac O, Saunders BR (2012) Tuning the mechanical properties of nanostructured ionomer films by controlling the extents of covalent crosslinking in core-shell nanoparticles. J Mater Chem 22:5840–5847CrossRefGoogle Scholar
  55. 55.
    Chen X, Pelton R, Ruckenstein E (2005) Long term stability of an ambient self-curable latex based on colloid dispersions in water of two reactive polymers. J Polym Sci A Polym Chem 43:2598–2605CrossRefGoogle Scholar
  56. 56.
    Pinprayoon O, Groves R, Lovell PA, Tungchaiwattana S, Saunders BR (2011) Polymer films prepared using ionically-crosslinked soft core-shell nanoparticles: a new class of nanostructured ionomers. Soft Matter 7:247–257CrossRefGoogle Scholar
  57. 57.
    Pham HH, Winnik MA (2006) Polymer interdiffusion vs cross-linking in carboxylic acid-carbodiimide latex films: Effect of annealing temperature, reactive group concentration, and carbodiimide substituent. Macromolecules 39:1425–1435CrossRefGoogle Scholar
  58. 58.
    Berrisford DJ, Lovell PA, Suliman NR, Whiting A (2005) Latent reactive groups unveiled through equilibrium dynamics and exemplified in crosslinking during film formation from aqueous polymer colloids. Chem Commun 21(47):5904–5906CrossRefGoogle Scholar
  59. 59.
    Chen XN, Ruckenstein E (2000) Emulsion procedures for thermally reversible covalent crosslinking of polymers. J Polym Sci Polym Chem 38:4373–4384CrossRefGoogle Scholar
  60. 60.
    Wei Y, Huang RYM (1995) Pervaporation with latex membranes: a study on membrane and pervaporation effects. Sep Sci Technol 30:697–717CrossRefGoogle Scholar
  61. 61.
    Ruckenstein E, Chen XN (2001) An ambient self-curable latex based on colloidal dispersions in water of two functionalized polymers and the thermally reversible crosslinked films generated. J Polym Sci A Polym Chem 39:389–397CrossRefGoogle Scholar
  62. 62.
    Ruckenstein E, Chen XN (2000) Covalent cross-linking of polymers through ionene formation and their thermal de-cross-linking. Macromolecules 33:8992–9001CrossRefGoogle Scholar
  63. 63.
    Hao L, An Q, Xu W, Zhang D, Zhang M (2013) Effect of polymerizable emulsifier and fluorine monomer on properties of self-crosslinking fluorinated polyacrylate soap-free latexes. J Polym Res 20:174CrossRefGoogle Scholar
  64. 64.
    Barbosa JV, Moniz J, Mendes A, Magalhães FD, Bastos MMSM (2014) Incorporation of an acrylic fatty acid derivative as comonomer for oxidative cure in acrylic latex. J Coat Technol Res 11:765–773CrossRefGoogle Scholar
  65. 65.
    Xiong PT, Lu DP, Chen PZ, Huang HZ, Guan R (2007) Preparation and surface properties of latexes with fluorine enriched in the shell by silicon monomer crosslinking. Eur Polym J 43:2117–2126CrossRefGoogle Scholar
  66. 66.
    Popadyuk A, Tarnavchyk I, Popadyuk N, Kohut A, Samaryk V, Voronov S, Voronov A (2014) Reinforcing latex coatings with reactive latex particles. Prog Org Coat 77:2123–2132CrossRefGoogle Scholar
  67. 67.
    Soleimani M, Haley JC, Majonis D, Guerin G, Lau W, Winnik MA (2011) Smart polymer nanoparticles designed for environmentally compliant coatings. J Am Chem Soc 133:11299–11307CrossRefGoogle Scholar
  68. 68.
    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B 39:933–961CrossRefGoogle Scholar
  69. 69.
    Piçarra S, Fidalgo A, Fedorov A, Martinho JMG, Farinha JPS (2014) Smart polymer nanoparticles for high-performance water-borne coatings. Langmuir 30:12345–12353CrossRefGoogle Scholar
  70. 70.
    Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022CrossRefGoogle Scholar
  71. 71.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRefGoogle Scholar
  72. 72.
    Meyer CD, Joiner CS, Fraser Stoddart J (2007) Template-directed synthesis employing reversible imine bond formation. Chem Soc Rev 36:1705–1723CrossRefGoogle Scholar
  73. 73.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714CrossRefGoogle Scholar
  74. 74.
    Tasdelen MA (2011) Diels–Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2:2133–2145CrossRefGoogle Scholar
  75. 75.
    Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN (2014) The Thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26:724–744CrossRefGoogle Scholar
  76. 76.
    Sumerlin BS, Vogt AP (2010) Macromolecular engineering through click chemistry and other efficient transformations. Macromolecules 43:1–13CrossRefGoogle Scholar
  77. 77.
    Chen LJ, Wu FQ (2012) Preparation and characterization of novel self cross-linking fluorinated acrylic latex. J Appl Polym Sci 123:1997–2002CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • José Paulo S. Farinha
    • 1
    Email author
  • Susana Piçarra
    • 2
  • Carlos Baleizão
    • 1
  • J. M. G. Martinho
    • 1
  1. 1.Centro de Química-Física MolecularIN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of LisbonLisboaPortugal
  2. 2.Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de SetúbalSetúbalPortugal

Personalised recommendations