Smart Polymeric-Based Microencapsulation: A Promising Synergic Combination

  • Felisa Reyes-Ortega
  • Majid HosseiniEmail author


Microencapsulation technology can be used to provide protection, control the release of the loaded material, negate compatibility issues, and avoid toxicity of the encapsulated materials. Microencapsulation provides the possibility of combining different types of smart polymers, thus achieving specific properties that are difficult to get using other techniques. This chapter describes the combination of microencapsulation technology using smart polymers for industrial applications, such as coatings and paints (encapsulation of self-healing agents), construction (encapsulation of phase-change materials), textile industry (encapsulation of thermal or moisture-sensitive polymers and light-responsive polymers), food and beverage industry (encapsulation of a vitamin, flavor, or aromatic substance), pharmaceutical formulations (encapsulation of a drug for its protection or controlled drug delivery), biomedical applications (encapsulation of a specific anticancer drug for target therapy, cell-based systems, and DNA or RNA encapsulation), and aerospace and automobiles applications (encapsulation of self-healing materials, flame retardant, plasticizers, and catalysts).


Stimuli-responsive polymer Microencapsulation Smart microcapsules Controlled release Self-healing 


  1. 1.
    Aguilar MR, Roman J (2014) Smart polymers and their applications. ElsevierGoogle Scholar
  2. 2.
    Kumar A et al (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32(10):1205–1237CrossRefGoogle Scholar
  3. 3.
    Aguilar MR, San Román J (2014) 1 – Introduction to smart polymers and their applications. In: Aguilar MR, Román JS (eds) Smart polymers and their applications. Woodhead Publishing, Cambridge, pp 1–11CrossRefGoogle Scholar
  4. 4.
    Cheng J et al (2007) Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5):869–876CrossRefGoogle Scholar
  5. 5.
    Reyes-Ortega F et al (2013) Encapsulation of low molecular weight heparin (bemiparin) into polymeric nanoparticles obtained from cationic block copolymers: properties and cell activity. J Mater Chem B 1(6):850–860CrossRefGoogle Scholar
  6. 6.
    Che Man SH et al (2013) Synthesis of polystyrene nanoparticles “armoured” with nanodimensional graphene oxide sheets by miniemulsion polymerization. J Polym Sci A Polym Chem 51(1):47–58CrossRefGoogle Scholar
  7. 7.
    Jianguo Zhang TJE, Yunqiao P, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69:607–611CrossRefGoogle Scholar
  8. 8.
    Yang J et al (2008) Microencapsulation of isocyanates for self-healing polymers. Macromolecules 41(24):9650–9655CrossRefGoogle Scholar
  9. 9.
    Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F (2011) Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine 6:877–895CrossRefGoogle Scholar
  10. 10.
    Lee EJ, Khan SA, Lim KH (2011) Gelatin nanoparticle preparation by nanoprecipitation. J Biomater Sci Polym Ed 22(4–6):753–771CrossRefGoogle Scholar
  11. 11.
    Campos E et al (2013) Designing polymeric microparticles for biomedical and industrial applications. Eur Polym J 49(8):2005–2021CrossRefGoogle Scholar
  12. 12.
    Freitas S, Merkle HP, Gander B (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release 102(2):313–332CrossRefGoogle Scholar
  13. 13.
    Almouazen E et al (2012) Development of a nanoparticle-based system for the delivery of retinoic acid into macrophages. Int J Pharm 430(1–2):207–215CrossRefGoogle Scholar
  14. 14.
    Borden MA et al (2005) Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans Ultrason Ferroelectr Freq Control 52(11):1992–2002CrossRefGoogle Scholar
  15. 15.
    Rickey ME, Ramstack JM, Lewis DH (2000) Preparation of biodegradable, biocompatible microparticles containing a biologically active agent. Google PatentsGoogle Scholar
  16. 16.
    de Moraes SL, de Lima JRB, Neto JBF (2013) Influence of dispersants on the rheological and colloidal properties of iron ore ultrafine particles and their effect on the pelletizing process—a review. J Mater Res Technol 2(4):386–391CrossRefGoogle Scholar
  17. 17.
    Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15(7):330–347CrossRefGoogle Scholar
  18. 18.
    Dubey R (2009) Microencapsulation technology and applications. Def Sci J 59(1):82–95Google Scholar
  19. 19.
    Jyothi NVN et al (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27(3):187–197CrossRefGoogle Scholar
  20. 20.
    Gutcho MH (1976) Microcapsules and microencapsulation techniques. Noyes Data Corporation, Park Ridge, NJGoogle Scholar
  21. 21.
    Arshady R (1990) Review: biodegradable microcapsular drug delivery systems: manufacturing methodology, release control and targeting prospects. J Bioact Compat Polym 5(3):315–342CrossRefGoogle Scholar
  22. 22.
    Morgan PW (2002) Interfacial polymerization. In: Matyjaszewski K (ed) Encyclopedia of polymer science and technology. Wiley, New YorkGoogle Scholar
  23. 23.
    Hunter RA, Turner PD, Rimmer S (2001) Suspension cross-linking of poly(aryl ether ketone)s containing carboxylic acid functionality. J Mater Chem 11(3):736–740CrossRefGoogle Scholar
  24. 24.
    Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23):2475–2490CrossRefGoogle Scholar
  25. 25.
    Pavanetto F et al (1992) Solvent evaporation, solvent extraction and spray drying for polylactide microsphere preparation. Int J Pharm 84(2):151–159CrossRefGoogle Scholar
  26. 26.
    Ye A (2008) Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications–a review. Int J Food Sci Technol 43(3):406–415CrossRefGoogle Scholar
  27. 27.
    Ghosh S (2006) In: Ghosh SK (ed) Functional coatings and microencapsulation: A general perspective. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: 10.1002/3527608478.ch1
  28. 28.
    Fuchs M et al (2006) Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng 75(1):27–35CrossRefGoogle Scholar
  29. 29.
    Teunou E, Poncelet D (2002) Batch and continuous fluid bed coating–review and state of the art. J Food Eng 53(4):325–340CrossRefGoogle Scholar
  30. 30.
    Bilati U, Allémann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24(1):67–75CrossRefGoogle Scholar
  31. 31.
    Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54(2):107–117CrossRefGoogle Scholar
  32. 32.
    Liu A et al (2006) Multilayered mesoporous titanate nanocomposite film: Fabrication by layer-by-layer self-assembly and its electrochemical properties with H+ intercalation. Electrochem Commun 8(2):206–210CrossRefGoogle Scholar
  33. 33.
    Wang Y, Angelatos AS, Caruso F (2007) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20(3):848–858CrossRefGoogle Scholar
  34. 34.
    Gong Y et al (2015) Magnetic, fluorescent, and thermo-responsive poly (MMA-NIPAM-Tb (AA) 3Phen)/Fe3O4 multifunctional nanospheres prepared by emulsifier-free emulsion polymerization. J Biomater Appl: p. 0885328215575761Google Scholar
  35. 35.
    Dai S, Ravi P, Tam KC (2008) pH-Responsive polymers: synthesis, properties and applications. Soft Matter 4(3):435–449CrossRefGoogle Scholar
  36. 36.
    Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913CrossRefGoogle Scholar
  37. 37.
    Ethirajan A (2008) Polymeric nanoparticles synthesized via miniemulsion process as templates for biomimetic mineralization. 2008, Ulm, Univ., Diss.Google Scholar
  38. 38.
    Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488–4507CrossRefGoogle Scholar
  39. 39.
    Reyes-Ortega F et al (2013) Smart heparin-based bioconjugates synthesized by a combination of ATRP and click chemistry. Polym Chem 4(9):2800–2814CrossRefGoogle Scholar
  40. 40.
    Shahabuddin S, Mohamad S, Sarih NM (2015) Synthesis of well-defined three-arm star-branched polystyrene through arm-first coupling approach by atom transfer radical polymerization. Int J Polym Sci 2015 (ID 961914)Google Scholar
  41. 41.
    Baruah PK, Khan S (2013) Self-complementary quadruple hydrogen bonding motifs: From design to function. RSC Adv 3(44):21202–21217CrossRefGoogle Scholar
  42. 42.
    Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45(10):4015–4039CrossRefGoogle Scholar
  43. 43.
    Tsarevsky NV, Matyjaszewski K (2007) \"Green\" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107(6):2270–2299CrossRefGoogle Scholar
  44. 44.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101(9):2921–2990CrossRefGoogle Scholar
  45. 45.
    di Lena F, Matyjaszewski K (2010) Transition metal catalysts for controlled radical polymerization. Prog Polym Sci 35(8):959–1021CrossRefGoogle Scholar
  46. 46.
    Zhao S et al (2014) Coaxial electrospray of liquid core–hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells. Integr Biol 6(9):874–884CrossRefGoogle Scholar
  47. 47.
    Carreira A et al (2010) Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohydr Polym 80(3):618–630CrossRefGoogle Scholar
  48. 48.
    Satturwar P et al (2007) pH-responsive polymeric micelles of poly (ethylene glycol)-b-poly (alkyl (meth) acrylate-co-methacrylic acid): influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil. Eur J Pharm Biopharm 65(3):379–387CrossRefGoogle Scholar
  49. 49.
    Stenzel MH (2008) RAFT polymerization: an avenue to functional polymeric micelles for drug delivery. Chem Commun 30:3486–3503CrossRefGoogle Scholar
  50. 50.
    Chiefari J et al (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562CrossRefGoogle Scholar
  51. 51.
    Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58(6):379–410CrossRefGoogle Scholar
  52. 52.
    Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process–a second update. Aust J Chem 62(11):1402–1472CrossRefGoogle Scholar
  53. 53.
    Pietrzak M, Jędrzejewska B, Pączkowski J (2009) Unusually highly efficient, singlet state, visible light photoinitiators based on styrylbenzimidazolium phenyltributylborate photoredox pairs for vinyl monomers free radical polymerization. J Polym Sci A Polym Chem 47(16):4119–4129CrossRefGoogle Scholar
  54. 54.
    Tsang EMW, Holdcroft S (2012) Alternative proton exchange membranes by chain-growth polymerization. In: Möller KM (ed) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 651–689.CrossRefGoogle Scholar
  55. 55.
    Averick S et al (2015) Well-defined biohybrids using reversible-deactivation radical polymerization procedures. J Control Release 205:45–57CrossRefGoogle Scholar
  56. 56.
    Moad G, Rizzardo E, Thang SH (2008) Toward living radical polymerization. Acc Chem Res 41(9):1133–1142CrossRefGoogle Scholar
  57. 57.
    Li Q et al (2014) A facile one pot strategy for the synthesis of well-defined polyacrylates from acrylic acid via RAFT polymerization. Chem Commun 50(25):3331–3334CrossRefGoogle Scholar
  58. 58.
    Wei X et al (2014) Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety. Sci China Chem 57(7):995–1001CrossRefGoogle Scholar
  59. 59.
    Zheng Z, Ling J, Müller AH (2014) Revival of the R‐group approach: a “CTA‐shuttled” grafting from approach for well‐defined cylindrical polymer brushes via RAFT polymerization. Macromol Rapid Commun 35(2):234–241CrossRefGoogle Scholar
  60. 60.
    De Priyadarsi et al (2008) Temperature-regulated activity of responsive polymer−protein conjugates prepared by grafting-from via RAFT polymerization. J Am Chem Soc 130(34):11288–11289Google Scholar
  61. 61.
    Otsuka H (2013) Reorganization of polymer structures based on dynamic covalent chemistry: polymer reactions by dynamic covalent exchanges of alkoxyamine units. Polym J 45(9):879–891CrossRefGoogle Scholar
  62. 62.
    Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101(12):3661–3688CrossRefGoogle Scholar
  63. 63.
    Delaittre G, Guimard NK, Barner-Kowollik C (2015) Cycloadditions in modern polymer chemistry. Acc Chem Res 48(5):1296–307CrossRefGoogle Scholar
  64. 64.
    Avti PK, Maysinger D, Kakkar A (2013) Alkyne-azide “click” chemistry in designing nanocarriers for applications in biology. Molecules 18(8):9531–9549CrossRefGoogle Scholar
  65. 65.
    Kurra Y et al (2014) Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities. Bioconjug Chem 25(9):1730–1738CrossRefGoogle Scholar
  66. 66.
    Cai Z et al (2014) 64Cu-labeled somatostatin analogues conjugated with cross-bridged phosphonate-based chelators via strain-promoted click chemistry for PET imaging: in silico through in vivo studies. J Med Chem 57(14):6019–6029CrossRefGoogle Scholar
  67. 67.
    Amblard F, Cho JH, Schinazi RF (2009) Cu (I)-catalyzed Huisgen azide− alkyne 1, 3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem Rev 109(9):4207–4220CrossRefGoogle Scholar
  68. 68.
    Johnson JA et al (2008) Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper‐catalyzed azide‐alkyne cycloaddition “click” chemistry. Macromol Rapid Commun 29(12‐13):1052–1072CrossRefGoogle Scholar
  69. 69.
    Hänni KD, Leigh DA (2010) The application of CuAAC ‘click’ chemistry to catenane and rotaxane synthesis. Chem Soc Rev 39(4):1240–1251CrossRefGoogle Scholar
  70. 70.
    Rao J et al (2008) Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry. Biomacromolecules 9(10):2586–2593CrossRefGoogle Scholar
  71. 71.
    Oak M, Mandke R, Singh J (2012) Smart polymers for peptide and protein parenteral sustained delivery. Drug Discov Today Technol 9(2):e131–e140CrossRefGoogle Scholar
  72. 72.
    Aïssa B et al (2012) Self-healing materials systems: overview of major approaches and recent developed technologies. Adv Mater Sci Eng 2012:17, Article ID 854203. doi: 10.1155/2012/854203
  73. 73.
    Murphy EB, Wudl F (2010) The world of smart healable materials. Prog Polym Sci 35(1):223–251CrossRefGoogle Scholar
  74. 74.
    Brown EN et al (2003) In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20(6):719–730CrossRefGoogle Scholar
  75. 75.
    Tong X-M et al (2010) Preparation and characterization of novel melamine modified poly (urea–formaldehyde) self-repairing microcapsules. Colloids Surf A Physicochem Eng Asp 371(1):91–97CrossRefGoogle Scholar
  76. 76.
    Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39(5):1703–1710CrossRefGoogle Scholar
  77. 77.
    Rule JD, Sottos NR, White SR (2007) Effect of microcapsule size on the performance of self-healing polymers. Polymer 48(12):3520–3529CrossRefGoogle Scholar
  78. 78.
    Böttger B et al (2013) Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: a phase-field study. Metall Mater Trans A 44(8):3765–3777CrossRefGoogle Scholar
  79. 79.
    Tasdelen MA (2011) Diels–Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2(10):2133–2145CrossRefGoogle Scholar
  80. 80.
    Guimard NK et al (2012) Current trends in the field of self‐healing materials. Macromol Chem Phys 213(2):131–143CrossRefGoogle Scholar
  81. 81.
    Luo Xiaofan (2010) Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications. Biomedical and Chemical Engineering–Dissertations, Paper 56. Syracuse University. (Last Accessed: May 2015)
  82. 82.
    Luo X et al (2009) A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. ACS Appl Mater Interfaces 1(3):612–620CrossRefGoogle Scholar
  83. 83.
    Williams KA, Boydston AJ, Bielawski CW (2007) Towards electrically conductive, self-healing materials. J R Soc Interface 4(13):359–362CrossRefGoogle Scholar
  84. 84.
    Baugher M et al (2004) The secure real-time transport protocol (SRTP). RFC 3711, MarchGoogle Scholar
  85. 85.
    Chen Y, Bose A, Bothun GD (2010) Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano 4(6):3215–3221CrossRefGoogle Scholar
  86. 86.
    Pankhurst Q et al (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22):224001CrossRefGoogle Scholar
  87. 87.
    Zhang WL, Choi HJ (2014) Stimuli-responsive polymers and colloids under electric and magnetic fields. Polymers 6(11):2803–2818CrossRefGoogle Scholar
  88. 88.
    Garcia SJ (2014) Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur Polym J 53:118–125CrossRefGoogle Scholar
  89. 89.
    Périchaud A et al (2012) Auto-reparation of polyimide film coatings for aerospace applications challenges and perspectives. INTECH Open Access PublisherGoogle Scholar
  90. 90.
    Yang Z et al (2011) A self-healing cementitious composite using oil core/silica gel shell microcapsules. Cem Concr Compos 33(4):506–512CrossRefGoogle Scholar
  91. 91.
    Rahmanian S et al (2015) Growth of carbon nanotubes on silica microparticles and their effects on mechanical properties of polypropylene nanocomposites. Mater Des 69:181–189CrossRefGoogle Scholar
  92. 92.
    Lee JY, Buxton GA, Balazs AC (2004) Using nanoparticles to create self-healing composites. J Chem Phys 121(11):5531–5540CrossRefGoogle Scholar
  93. 93.
    Lee J-Y et al (2006) Nanoparticle alignment and repulsion during failure of glassy polymer nanocomposites. Macromolecules 39(21):7392–7396CrossRefGoogle Scholar
  94. 94.
    Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33(5):479–522CrossRefGoogle Scholar
  95. 95.
    Glogowski E et al (2006) Functionalization of nanoparticles for dispersion in polymers and assembly in fluids. J Polym Sci A Polym Chem 44(17):5076–5086CrossRefGoogle Scholar
  96. 96.
    Alkan C et al (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93(1):143–147CrossRefGoogle Scholar
  97. 97.
    Sanchez-Silva L et al (2010) Synthesis and characterization of paraffin wax microcapsules with acrylic-based polymer shells. Ind Eng Chem Res 49(23):12204–12211CrossRefGoogle Scholar
  98. 98.
    Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45(2):263–275CrossRefGoogle Scholar
  99. 99.
    Singha K (2012) A review on coating and lamination in textiles: processes and applications. Am J Polym Sci 2(3):39–49CrossRefGoogle Scholar
  100. 100.
    Zuckerman JL et al (2003) Fabric coating containing energy absorbing phase change material and method of manufacturing same. Google PatentsGoogle Scholar
  101. 101.
    Farid MM et al (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45(9):1597–1615CrossRefGoogle Scholar
  102. 102.
    Mondal S (2008) Phase change materials for smart textiles–an overview. Appl Therm Eng 28(11):1536–1550CrossRefGoogle Scholar
  103. 103.
    Pause B (1995) Development of heat and cold insulating membrane structures with phase change material. J Ind Text 25(1):59–68CrossRefGoogle Scholar
  104. 104.
    Zhang H, Wang X (2009) Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine–formaldehyde shell. Colloids Surf A Physicochem Eng Asp 332(2):129–138CrossRefGoogle Scholar
  105. 105.
    Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242(1):55–62CrossRefGoogle Scholar
  106. 106.
    Ravichandran R et al (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12(3):286–311CrossRefGoogle Scholar
  107. 107.
    Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35(1):278–301CrossRefGoogle Scholar
  108. 108.
    Chi A et al (2013) Intelligent drug-delivery devices based on micro-and nano-technologies. Ther Deliv 4(1):77–94CrossRefGoogle Scholar
  109. 109.
    Sharma G et al (2011) Recent trends in pulsatile drug delivery systems–a review. Int J Drug Delivery 2(3):200–212. doi: 10.5138/ijdd.2010.0975.0215.02030 CrossRefGoogle Scholar
  110. 110.
    Kode JA et al (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11(4):377–391CrossRefGoogle Scholar
  111. 111.
    Olabisi RM (2015) Cell microencapsulation with synthetic polymers. J Biomed Mater Res A 103(2):846–859CrossRefGoogle Scholar
  112. 112.
    Orive G et al (2003) Cell encapsulation: promise and progress. Nat Med 9(1):104–107CrossRefGoogle Scholar
  113. 113.
    Lanza RP, WM Kuhtreiber, WL Chick (2000) Microcapsules and composite microreactors for immunoisolation of cells. Google PatentsGoogle Scholar
  114. 114.
    Orive G et al (2003) Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci 24(5):207–210CrossRefGoogle Scholar
  115. 115.
    Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Control Release 80(1):9–28CrossRefGoogle Scholar
  116. 116.
    Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly (ethylene oxide) and poly (2-oxazoline)s. Prog Polym Sci 37(5):686–714CrossRefGoogle Scholar
  117. 117.
    Chu C (2003) Biodegradable hydrogels as drug controlled release vehicles. In: Yaszemski MJ et al. (eds) Biomaterials handbook–advanced applications of basic sciences, and bioengineering. Chapter 19 Tissue engineering and novel delivery systems. CRC Press, pp 871–909.Google Scholar
  118. 118.
    Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37(8):1473–1481CrossRefGoogle Scholar
  119. 119.
    Ganta S et al (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126(3):187–204CrossRefGoogle Scholar
  120. 120.
    Reyes-Ortega F (2014) 3 – pH-responsive polymers: properties, synthesis and applications. In: Aguilar MR, Román JS (eds) Smart polymers and their applications. Woodhead Publishing, Cambridge, pp 45–92CrossRefGoogle Scholar
  121. 121.
    Xue C, Li Q (2013) Stimuli-responsive smart organic hybrid metal nanoparticles. In: Li Q (ed) Intelligent stimuli-responsive materials: from well-defined nanostructures to applications. Wiley, Hoboken, NJ, pp 293–333 ISBN: 9781118680469Google Scholar
  122. 122.
    Mori H, Müller AH (2003) New polymeric architectures with (meth) acrylic acid segments. Prog Polym Sci 28(10):1403–1439CrossRefGoogle Scholar
  123. 123.
    Tao H, Parthiban A (2014) Stimuli-responsive copolymers and their applications. In: Parthiban A (ed) Synthesis and applications of copolymers. Wiley, Hoboken, NJ, pp 274–306Google Scholar
  124. 124.
    Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222CrossRefGoogle Scholar
  125. 125.
    Chen J-K, Chang C-J (2014) Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: a review. Materials 7(2):805–875CrossRefGoogle Scholar
  126. 126.
    Foglio MA et al (2013) Pharmaceutical compositions comprising arrabidaea chica extract in controlled release systems, production process and use thereof. Google PatentsGoogle Scholar
  127. 127.
    Yasin MN et al (2014) Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release 196:208–221CrossRefGoogle Scholar
  128. 128.
    Bawa P et al (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4(2):022001CrossRefGoogle Scholar
  129. 129.
    Huang S et al (2014) Optimization and characterization of the photosensitive N-succinyl-N’-4-(2-nitrobenzyloxy)-succinyl-chitosan micelles. In: Twelfth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2014). International Society for Optics and PhotonicsGoogle Scholar
  130. 130.
    Yi Q, Sukhorukov GB (2014) UV light stimulated encapsulation and release by polyelectrolyte microcapsules. Adv Colloid Interf Sci 207:280–289CrossRefGoogle Scholar
  131. 131.
    Ramteke K, Chavanke M, Chavanke P (2012) Stimuli sensitive hydrogels in drug delivery systems. Int J Pharm Sci Res 3(12):4604–4616Google Scholar
  132. 132.
    Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60CrossRefGoogle Scholar
  133. 133.
    Tomatsu I, Peng K, Kros A (2011) Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 63(14):1257–1266CrossRefGoogle Scholar
  134. 134.
    Andreopoulos FM, Beckman EJ, Russell AJ (1998) Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19(15):1343–1352CrossRefGoogle Scholar
  135. 135.
    Peng K et al (2009) Cyclodextrin–dextran based in situ hydrogel formation: a carrier for hydrophobic drugs. Soft Matter 6(1):85–87CrossRefGoogle Scholar
  136. 136.
    Peng K et al (2010) Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter 6(16):3778–3783CrossRefGoogle Scholar
  137. 137.
    Yi Q, Sukhorukov GB (2013) Photolysis triggered sealing of multilayer capsules to entrap small molecules. ACS Appl Mater Interfaces 5(14):6723–6731CrossRefGoogle Scholar
  138. 138.
    Medeiros S et al (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 403(1):139–161CrossRefGoogle Scholar
  139. 139.
    Maffli L (2014) Fluidically-coupled dielectric elastomer actuator structures for tunable optics and microfluidics. ÉCOLE Polytechnique Fédérale De LausanneGoogle Scholar
  140. 140.
    Hong C, Sung J, Choi H (2009) Effects of medium oil on electroresponsive characteristics of chitosan suspensions. Colloid Polym Sci 287(5):583–589CrossRefGoogle Scholar
  141. 141.
    Zhang K, Zhang WL, Choi HJ (2013) Facile fabrication of self-assembled PMMA/graphene oxide composite particles and their electroresponsive properties. Colloid Polym Sci 291(4):955–962CrossRefGoogle Scholar
  142. 142.
    Yun J et al (2010) pH and electro-responsive release behavior of MWCNT/PVA/PAAc composite microcapsules. Colloids Surf A Physicochem Eng Asp 368(1):23–30CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Tecnologías Avanzadas Inspiralia, S.L., Parque Científico de MadridCantoblancoSpain
  2. 2.Manufacturing and Industrial Engineering DepartmentCollege of Engineering and Computer Science, The University of Texas – Rio Grande ValleyEdinburgUSA

Personalised recommendations