Advertisement

Sensory Polymers for Detecting Explosives and Chemical Warfare Agents

  • José M. GarcíaEmail author
  • Jesús L. Pablos
  • Félix C. García
  • Felipe Serna
Chapter

Abstract

The detection of explosives (EXs) and chemical warfare agents (CWA) is challenging and a topic of current interest. It is driven by societal concerns about the widespread use of explosives in the mining industry and military endeavors and specifically in terrorist attacks and of CWA in the latter. The detection and quantification of these chemicals is twofold, through vapor and in solution detection. Sensory polymers are suitable materials for this purpose because they can be transformed or prepared as intelligent films, coatings, and fibers in sensory materials for transducing devices, as smart strips or tags that can be easily handled, or even as smart coatings for commercial fabrics as well as paint for all kinds of surfaces. The detection is based on any variation of a measurable property arisen from the target species/polymer interaction such as mass uptake, conductivity or resistivity changes, chemo-mechanical and electrochemical behavior variations, and chromogenic and fluorescence behavior modifications.

Keywords

Explosives Chemical warfare agents Nerve agents Polymers Sensors 

Notes

Acknowledgments

We gratefully acknowledge the financial support provided by the Spanish Ministerio de Economía y Competitividad-Feder (MAT2014-54137-R) and by the Consejería de Educación—Junta de Castilla y León (BU232U13).

References

  1. 1.
    Pacsial-Ong EJ, Aguilar ZP (2013) Chemical warfare agent detection: a review of current trends and future perspective. Front Biosci (Schol Ed) S5:516–543CrossRefGoogle Scholar
  2. 2.
    García JM, García FC, Serna F, de la Peña JL (2011) Fluorogenic and chromogenic polymer chemosensors. Polym Rev 51:341–390CrossRefGoogle Scholar
  3. 3.
    Royo S, Martínez-Máñez R, Sancenón F, Costero AM, Parra M, Gil S (2007) Chromogenic and fluorogenic reagents for chemical warfare nerve agents detection. Chem Commun 4839–4847Google Scholar
  4. 4.
    Sadik OA, Land WH Jr, Wang J (2003) Targeting chemical and biological warfare agents at the molecular level. Electroanalysis 15:1149–1159CrossRefGoogle Scholar
  5. 5.
    Hoenig SL (2007) Compendium of chemical warfare agents. Springer, New York, NYGoogle Scholar
  6. 6.
    Kim K, Tsay OG, Atwood DA, Churchill DG (2011) Destruction and detection of chemical warfare agents. Chem Rev 111:5345–5403CrossRefGoogle Scholar
  7. 7.
    Rochat S, Swager TM (2013) Conjugated amplifying polymers for optical sensing applications. ACS Appl Mater Interfaces 5:4488–4502CrossRefGoogle Scholar
  8. 8.
    Skotheim TA, Reynolds JR (eds) (2007) Handbook of conducting polymers. Conjugated polymers, theory, synthesis, properties and characterization. CRC Press, Boca Raton, FLGoogle Scholar
  9. 9.
    McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574CrossRefGoogle Scholar
  10. 10.
    Collins GE, Buckley LJ (1996) Conductive polymer-coated fabrics for chemical sensing. Synth Met 78:93–101CrossRefGoogle Scholar
  11. 11.
    Collins GE, Buckley LJ (1997) Conductive polymer coated fabrics for chemical sensing. US Patent 5,674,752Google Scholar
  12. 12.
    Bansal L, El-Sherif M (2005) Intrinsic optical-fiber sensor for nerve agent sensing. IEEE Sens J 5:648–655CrossRefGoogle Scholar
  13. 13.
    Hosseini SH, Ansari R, Noor P (2013) Application of polyaniline film as a sensor for stimulant nerve agents. Phosphorus Sulfur Silicon Relat Elem 188:1394–1401CrossRefGoogle Scholar
  14. 14.
    Jo S, Kim D, Son S-H, Kim Y, Lee TS (2014) Conjugated poly(fluorene-quinoxaline) for fluorescence imaging and chemical detection of nerve agents with its paper-based strip. ACS Appl Mater Interfaces 6:1330–1336CrossRefGoogle Scholar
  15. 15.
    Lee JS, Shin DH, Jun J, Jang J (2013) Multidimensional polypyrrole/iron oxyhydroxide hybrid nanoparticles for chemical nerve gas agent sensing application. ACS Nano 7:10139–10147CrossRefGoogle Scholar
  16. 16.
    Kwon OS, Park SJ, Lee JS, Park E, Kim T, Park H-W, You SA, Yoon H, Jang J (2012) Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett 12:2797–2802CrossRefGoogle Scholar
  17. 17.
    Wang F, Gu H, Swager TM (2008) Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J Am Chem Soc 130:5392–5393CrossRefGoogle Scholar
  18. 18.
    Vergara AV, Pernites RB, Pascua S, Binag CA, Advincula RC (2012) QCM sensing of a chemical nerve agent analog via electro polymerized molecularly imprinted polythiophene films. J Polym Sci A Polym Chem 50:675–685CrossRefGoogle Scholar
  19. 19.
    Shulga OV, Palmer C (2006) Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl as supporting electrolyte. Anal Bioanal Chem 385:1116–1123CrossRefGoogle Scholar
  20. 20.
    Jenkins AL, Bae SY (2005) Molecularly imprinted polymers for chemical agent detection in multiple water matrices. Anal Chim Acta 542:32–37CrossRefGoogle Scholar
  21. 21.
    Prathish KP, Vishnuvardhan V, Prasada Rao T (2009) Rational design of in situ monolithic imprinted polymer membranes for the potentiometric sensing of diethyl chlorophosphate–a chemical warfare agent simulant. Electroanalysis 21(9):1048–1056CrossRefGoogle Scholar
  22. 22.
    Jenkins AL, Uy OM, Murray GM (1999) Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent Soman in water. Anal Chem 71:373–378CrossRefGoogle Scholar
  23. 23.
    Boyd JW, Cobb GP, Southard GE, Murray GM (2004) Development of molecularly imprinted polymer sensors for chemical warfare agents. Johns Hopkins APL Tech Dig 25:44–49Google Scholar
  24. 24.
    Southard GE, Van Houten KA, Ott EW Jr, Murray GM (2007) Luminescent sensing of organophosphates using europium(III) containing imprinted polymers prepared by RAFT polymerization. Anal Chim Acta 581:202–207CrossRefGoogle Scholar
  25. 25.
    Prathish KP, Prasad K, Rao TP, Suryanarayana MVS (2007) Molecularly imprinted polymer-based potentiometric sensor for degradation product of chemical warfare agents Part I. Methylphosphonic acid. Talanta 71:1976–1980CrossRefGoogle Scholar
  26. 26.
    Diehl KL, Anslyn EV (2013) Array sensing using optical methods for detection of chemical and biological hazards. Chem Soc Rev 42:8596–8611CrossRefGoogle Scholar
  27. 27.
    Joo B-S, Huh J-S, Lee D-D (2007) Fabrication of polymer SAW sensor array to classify chemical warfare agents. Sens Actuators B 121:47–53CrossRefGoogle Scholar
  28. 28.
    Matatagui D, Martí J, Fernández MJ, Fontecha JL, Gutiérrez J, Gràcia I, Cané C, Horrillo MC (2011) Chemical warfare agents simulants detection with an optimized SAW sensor array. Sens Actuators B 154:199–205CrossRefGoogle Scholar
  29. 29.
    Di Pietrantonio F, Benetti M, Cannata D, Verona E, Palla-Papavlu A, Dinca V, Dinescu M, Mattle T, Lippert T (2012) Volatile toxic compound detection by surface acoustic wave sensor array coated with chemoselective polymers deposited by laser induced forward transfer: application to sarin. Sens Actuators B 174:158–167CrossRefGoogle Scholar
  30. 30.
    Cannatà D, Benetti M, Di Pietrantonio F, Verona E, Palla-Papavlu A, Dinca V, Dinescu M, Lippert T (2012) Nerve agent simulant detection by solidly mounted resonators (SMRs) polymer coated using laser induced forward transfer (LIFT) technique. Sens Actuators B 173:32–39CrossRefGoogle Scholar
  31. 31.
    Alizadeh T, Zeynali S (2008) Electronic nose based on the polymer coated SAW sensors array for the warfare agent simulants classification. Sens Actuators B 129:412–423CrossRefGoogle Scholar
  32. 32.
    Matatagui D, Fernández MJ, Fontecha J, Santos JP, Gràciab I, Cané C, Horrillo MC (2012) Love-wave sensor array to detect, discriminate and classify chemical warfare agent simulants. Sens Actuators B 175:173–178CrossRefGoogle Scholar
  33. 33.
    Mlsna TE, Cemalovic S, Warburton M, Hobson ST, Mlsna DA, Patel SV (2006) Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sens Actuators B 116:192–201CrossRefGoogle Scholar
  34. 34.
    Hopkins AR, Lewis NS (2001) Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants dimethylmethylphosphonate and diisopropylmethylphosponate. Anal Chem 73:884–892CrossRefGoogle Scholar
  35. 35.
    Hartmann-Thompson C, Keeley DL, Rousseau JR, Dvornic PR (2009) Fluorescent dendritic polymers and nanostructured coatings for the detection of chemical warfare agents and other analytes. J Polym Sci A Polym Chem 47:5101–5115CrossRefGoogle Scholar
  36. 36.
    Sarkar S, Shunmugam R (2014) Polynorbornene derived 8-hydroxyquinoline paper strips for ultrasensitive chemical nerve agent surrogate sensing. Chem Commun 50:8511–8513CrossRefGoogle Scholar
  37. 37.
    Shunmugam R, Tew GN (2008) Terpyridine–lanthanide complexes respond to fluorophosphate containing nerve gas G-agent surrogates. Chem Eur J 14:5409–5412CrossRefGoogle Scholar
  38. 38.
    Bhadury PS, Dubey V, Singh S, Saxena C (2005) 2,2-Bis(3-allyl-4-hydroxyphenyl) hexafluoropropane and fluorosiloxane as coating materials for nerve agent sensors. J Fluorine Chem 126:1252–1256CrossRefGoogle Scholar
  39. 39.
    Maji S, Asrey R, Kumar S, Saxena C, Kumar N, Vyas KD, Banerjee S (2010) Polymer-coated piezoelectric quartz crystal sensor for sensing the nerve agent simulant dimethyl methylphosphonate vapor. J Appl Polym Sci 116:3708–3717Google Scholar
  40. 40.
    Ewing RW, Waltman MJ, Atkinson DA, Grate JW, Hotchkiss PJ (2013) The vapor pressures of explosives. Trend Anal Chem 42:35–48CrossRefGoogle Scholar
  41. 41.
    Buryakov A, Buryakov TI, Matsaev VT (2014) Optical chemical sensors for the detection of explosives and associated substances. J Anal Chem 69:616–631CrossRefGoogle Scholar
  42. 42.
    Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386CrossRefGoogle Scholar
  43. 43.
    Toal SJ, Trogler WC (2006) Polymer sensors for nitroaromatic explosives detection. J Mater Chem 16:2871–2883CrossRefGoogle Scholar
  44. 44.
    Hissler M, Dyer PW, Réau R (2003) Linear organic π -conjugated systems featuring the heavy group 14 and 15 elements. Coord Chem Rev 244:1–44CrossRefGoogle Scholar
  45. 45.
    Salinas Y, Martínez-Máñez R, Marcos MD, Sancenón F, Costero A, Parra M, Gil S (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41:1261–1296CrossRefGoogle Scholar
  46. 46.
    Germain ME, Knapp MJ (2009) Optical explosives detection: from color changes to fluorescence turn-on. Chem Soc Rev 38:2543–2555CrossRefGoogle Scholar
  47. 47.
    Cumming CJ, Aker C, Fisher M, Fox M, la Grone MJ, Reust D, Rockley MG, Swager TM, Towers E, Williams V (2001) Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines. IEEE Trans Geosci Remote Sensing 39:1119–1128CrossRefGoogle Scholar
  48. 48.
    Yang J-S, Swager TM (1998) Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J Am Chem Soc 120:11864–11873CrossRefGoogle Scholar
  49. 49.
    Yang J-S, Swager TM (1998) Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials. J Am Chem Soc 120:5321–5322CrossRefGoogle Scholar
  50. 50.
    Levitsky IA, Kim J, Swager TM (1999) Energy migration in a poly(phenylene ethynylene): determination of interpolymer transport in anisotropic Langmuir-Blodgett films. J Am Chem Soc 121:1466–1472CrossRefGoogle Scholar
  51. 51.
    Zahn S, Swager TM (2002) Three-dimensional electronic delocalization in chiral conjugated polymers. Angew Chem Int Ed 41:4225–4230CrossRefGoogle Scholar
  52. 52.
    Amara JP, Swager TM (2005) Synthesis and properties of poly(phenylene ethynylene)s with pendant hexafluoro-2-propanol groups. Macromolecules 38:9091–9094CrossRefGoogle Scholar
  53. 53.
    Thomas SW III, Swager TM (2006) Trace hydrazine detection with fluorescent conjugated polymers: a turn-on sensory mechanism. Adv Mater 18:1047–1050CrossRefGoogle Scholar
  54. 54.
    Rose A, Lugmair CG, Swager TM (2001) Excited-state lifetime modulation in triphenylene-based conjugated polymers. J Am Chem Soc 123:11298–11299CrossRefGoogle Scholar
  55. 55.
    Yamaguchi S, Swager TM (2001) Oxidative cyclization of bis(biaryl)acetylenes: synthesis and photophysics of dibenzo[g,p]chrysene-based fluorescent polymers. J Am Chem Soc 123:12087–12088CrossRefGoogle Scholar
  56. 56.
    Albert KJ, Myrick ML, Brown SB, James DL, Milanovich FP, Walt DR (2001) Field-deployable sniffer for 2, 4-dinitrotoluene detection. Environ Sci Technol 35:3193–3200CrossRefGoogle Scholar
  57. 57.
    Rose A, Zhu Z, Madigan CF, Swager TM, Bulovic V (2005) Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434:876–879CrossRefGoogle Scholar
  58. 58.
    Gopalakrishnan D, Dichtel WR (2013) Direct detection of RDX vapor using a conjugated polymer network. J Am Chem Soc 135:8357–8362CrossRefGoogle Scholar
  59. 59.
    Deng C, He Q, He C, Shi L, Cheng J, Lin T (2010) Conjugated polymer−titania nanoparticle hybrid films: random lasing action and ultrasensitive detection of explosive vapors. J Phys Chem B 114:4725–4730CrossRefGoogle Scholar
  60. 60.
    Chang C, Chao C, Huang JH, Li A, Hsu C, Lin M, Hsieh B, Su A (2004) Fluorescent conjugated polymer films as TNT chemosensors. Synth Met 144:297–301CrossRefGoogle Scholar
  61. 61.
    Zhou D, Swager TM (2005) Sensory responses in solution vs solid state: a fluorescence quenching study of poly(iptycenebutadiynylene)s. Macromolecules 38:9377–9384CrossRefGoogle Scholar
  62. 62.
    Narayanan A, Varnavski PP, Swager TM, Goodson T (2008) Multiphoton fluorescence quenching of conjugated polymers for TNT detection. J Phys Chem C 112:881–884CrossRefGoogle Scholar
  63. 63.
    Chen S, Zhang Q, Zhang J, Gu J, Zhang L (2010) Synthesis of two conjugated polymers as TNT chemosensor materials. Sens Actuators B 149:155–160CrossRefGoogle Scholar
  64. 64.
    He G, Yan N, Yang J, Wang H, Ding L, Yin S, Fang Y (2011) Pyrene-containing conjugated polymer-based fluorescent films for highly sensitive and selective sensing of TNT in aqueous medium. Macromolecules 44:4759–4766CrossRefGoogle Scholar
  65. 65.
    Novotney JL, Dichtel WR (2013) Conjugated porous polymers for TNT vapor detection. ACS Macro Lett 2:423–426CrossRefGoogle Scholar
  66. 66.
    Saxena K, Kumar P, Jain VK (2010) Fluorescence quenching studies of conjugated polymer poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene in the presence of TNT. J Lumin 130:2260–2264CrossRefGoogle Scholar
  67. 67.
    Levitsky IA, Euler WB, Tokranova N, Rose A (2007) Fluorescent polymer-porous silicon microcavity devices for explosive detection. Appl Phys Lett 90:041904CrossRefGoogle Scholar
  68. 68.
    Saxena A, Fujiki M, Rai R, Kwak G (2005) Fluoroalkylated polysilane film as a chemosensor for explosive nitroaromatic compounds. Chem Mater 17:2181–2185CrossRefGoogle Scholar
  69. 69.
    Sohn H, Calhoun RM, Sailor MJ, Trogler WC (2001) Detection of TNT and picric acid on surfaces and in seawater using photoluminescent polysiloles. Angew Chem Int Ed 40:2104–2105CrossRefGoogle Scholar
  70. 70.
    Sohn H, Sailor MJ, Magde D, Trogler WC (2003) Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles. J Am Chem Soc 125:3821–3830CrossRefGoogle Scholar
  71. 71.
    Toal SJ, Sanchez J, Dugan RE, Trogler WC (2007) Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole containing polymers. J Forensic Sci 52:79–83CrossRefGoogle Scholar
  72. 72.
    Sanchez J, Urbas SA, Toal SJ, Trogler WC (2008) Catalytic hydrosilylation routes to divinylbenzene bridged silole and silafluorene polymers. Applications to surface imaging of explosive particulates. Macromolecules 41:1237–1245CrossRefGoogle Scholar
  73. 73.
    Sanchez JC, Toal SJ, Wang Z, Dugan RE, Trogler WC (2007) Selective detection of trace nitroaromatic, nitramine, and nitrate ester explosive residues using a three-step fluorimetric sensing process: a tandem turn-off, turn-on sensor. J Forensic Sci 52:1308–1313Google Scholar
  74. 74.
    Sanchez JC, DiPasquale AG, Rheingold AL, Trogler WC (2007) Synthesis, luminescence properties and explosives sensing with 1,1-tetraphenylsilol- and 1,1-silafluorene-vinylene polymers. Chem Mater 19:6459–6470CrossRefGoogle Scholar
  75. 75.
    Toal SJ, Magde D, Trogler WC (2005) Luminescent oligo(tetraphenyl)silole nanoparticles as chemical sensors for aqueous TNT. Chem Commun 43:5465–5467CrossRefGoogle Scholar
  76. 76.
    Sanchez JC, Trogler WC (2008) Efficient blue-emitting silafluorene–fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives. J Mater Chem 18:3143–3156CrossRefGoogle Scholar
  77. 77.
    Martinez HP, Grant CD, Reynolds JG, Trogler WC (2012) Silica anchored fluorescent organosilicon polymers for explosives separation and detection. J Mater Chem 22:2908–2914CrossRefGoogle Scholar
  78. 78.
    Yang J, Aschemeyer S, Martinez HP, Trogler WC (2010) Hollow silica nanospheres containing a silafluorene–fluorene conjugated polymer for aqueous TNT and RDX detection. Chem Commun 46:6804–6806CrossRefGoogle Scholar
  79. 79.
    Feng J, Li Y, Yang M (2010) Conjugated polymer-grafted silica nanoparticles for the sensitive detection of TNT. Sens Actuators B 145:438–443CrossRefGoogle Scholar
  80. 80.
    Feng L, Li H, Qu Y, Lü C (2012) Detection of TNT based on conjugated polymer encapsulated in mesoporous silica nanoparticles through FRET. Chem Commun 48:4633–4635CrossRefGoogle Scholar
  81. 81.
    Liu Y, Mills R, Boncella J, Schanze K (2001) Fluorescent polyacetylene thin film sensor for nitroaromatics. Langmuir 17:7452–7455CrossRefGoogle Scholar
  82. 82.
    Nagarjuna G, Kumar A, Kokil A, Jadhav KG, Yurt S, Kumar J, Venkataraman D (2011) Enhancing sensing of nitroaromatic vapours by thiophene-based polymer films. J Mater Chem 21:16597–16602CrossRefGoogle Scholar
  83. 83.
    Aguilar AD, Forzani ES, Leright M, Tsow F, Cagan A, Iglesias RA, Nagahara LA, Amlani I, Tsui R, Tao NJ (2010) A hybrid nanosensor for TNT vapor detection. Nano Lett 10:380–384CrossRefGoogle Scholar
  84. 84.
    Zhang X, Jenekhe SA (2000) Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules 33:2069–2082CrossRefGoogle Scholar
  85. 85.
    Hou S, Ding M, Gao L (2003) Synthesis and properties of polyquinolines and polyanthrazolines containing pyrrole units in the main chain. Macromolecules 36:3826–3832CrossRefGoogle Scholar
  86. 86.
    Kin TH, Kim HJ, Kwak CG, Park WH, Lee TS (2006) Aromatic oxadiazole-based conjugated polymers with excited-state intramolecular proton transfer: their synthesis and sensing ability for explosive nitroaromatic compounds. J Polym Sci A Polym Chem 44:2059–2068CrossRefGoogle Scholar
  87. 87.
    Wang F, Wang W, Liu B, Wang Z, Zhang Z (2009) Copolypeptide-doped polyaniline nanofibers for electrochemical detection of ultratrace trinitrotoluene. Talanta 79:376–382CrossRefGoogle Scholar
  88. 88.
    Cerruti M, Jaworski J, Raorane D, Zueger C, Varadarajan J, Carraro C, Lee S-W, Maboudian R, Majumdar A (2009) Polymer-oligopeptide composite coating for selective detection of explosives in water. Anal Chem 81:4192–4199CrossRefGoogle Scholar
  89. 89.
    Kim TH, Lee BY, Jaworski J, Yokoyama K, Chung W-J, Wang E, Hong S, Majumdar A, Lee S-W (2011) Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano 5:2824–2830CrossRefGoogle Scholar
  90. 90.
    Thomas SW III, Amara JP, Bjork RE, Swager TM (2005) Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). Chem Commun 36:4572–4574CrossRefGoogle Scholar
  91. 91.
    Nie H, Zhao Y, Zhang M, Ma Y, Baumgarten M, Müllen K (2011) Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chem Commun 47:1234–1236CrossRefGoogle Scholar
  92. 92.
    Nie H, Sun G, Zhang M, Baumgarten M, Müllen K (2012) Fluorescent conjugated polycarbazoles for explosives detection: Side chain effects on TNT sensor sensitivity. J Mater Chem 22:2129–2132CrossRefGoogle Scholar
  93. 93.
    Nguyen HH, Li X, Wang N, Wang ZY, Ma J, Bock WJ, Ma D (2009) Fiber optic detection of explosives using readily available fluorescent polymers. Macromolecules 42:921–926CrossRefGoogle Scholar
  94. 94.
    Lu W, Xue M, Xu Z, Dong X, Xue F, Wang F, Wang Q, Meng Z (2015) Molecularly imprinted polymers for the sensing of explosives and chemical warfare agents. Curr Org Chem 19:62–71CrossRefGoogle Scholar
  95. 95.
    Sharma PS, Kutner W, D’Souza F (2012) Molecular imprinting for selective sensing of explosives, warfare agents, and toxins. In: Nikolelis DP (ed) Portable chemical sensors: weapons against bioterrorism, NATO science for peace and security series A: chemistry and biology. Springer, DordrechtGoogle Scholar
  96. 96.
    Stringer RC, Gangopadhyay S, Grant SA (2010) Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Anal Chem 82:4015–4019CrossRefGoogle Scholar
  97. 97.
    Bunte G, Hürttlen J, Pontius H, Hartlieb K, Krause H (2007) Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Anal Chim Acta 591:49–56CrossRefGoogle Scholar
  98. 98.
    Bunte G, Heil M, Ruseling D, Hurttlen J, Pontius H, Krause H (2009) Trace detection of explosives vapours by molecularly imprinted polymers for security measures. Propellants Explos Pyrotech 34:245–251CrossRefGoogle Scholar
  99. 99.
    Roeseling D, Tuercke T, Krause H, Loebbecke S (2009) Microreactor-based synthesis of molecularly imprinted polymer beads used for explosive detection. Org Process Res Dev 13:1007–1013CrossRefGoogle Scholar
  100. 100.
    Lin J, Kending CE, Nesterov EE (2007) Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials. J Am Chem Soc 129:15911–15918CrossRefGoogle Scholar
  101. 101.
    Holthoff EL, Stratis-Cullum DN, Hankus ME (2011) A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering. Sensors 11:2700–2714CrossRefGoogle Scholar
  102. 102.
    Xie C, Liu B, Wang Z, Gao D, Guan G, Zhang Z (2008) Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem 80:437–443CrossRefGoogle Scholar
  103. 103.
    Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) un natural waters and soil samples. Biosens Bioelectron 25:1166–1172CrossRefGoogle Scholar
  104. 104.
    Mamo SK, Gonzalez-Rodriguez J (2014) Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP). Sensors 14:23269–23282CrossRefGoogle Scholar
  105. 105.
    Walker NR, Linman MJ, Timmers MM, Dean SL, Burkett CM, Lloyd JA, Keelor JD, Baughman BM, Edmiston PL (2007) Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol–gel sensing films. Anal Chim Acta 593:82–91CrossRefGoogle Scholar
  106. 106.
    Huynh T-P, Sosnowska M, Sobczak JW, KC CB, Nesterov VN, D’Souza F, Kutner W (2013) Simultaneous chronoamperometry and piezoelectric microgravimetry determination of nitroaromatic explosives using molecularly imprinted thiophene polymers. Anal Chem 85:8361–8368CrossRefGoogle Scholar
  107. 107.
    Riskin M, Tel-Vered R, Willner I (2010) Imprinted Au-nanoparticle composites for the ultrasensitive surface plasmon resonance detection of hexahydro-1,3,5-trinitro-1,3,5-triazine/RDX). Adv Mater 22:1387–1391CrossRefGoogle Scholar
  108. 108.
    Riskin M, Tel-Vered R, Bourenko T, Granot E, Willner I (2008) Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor−acceptor interactions. J Am Chem Soc 130:9726–9733CrossRefGoogle Scholar
  109. 109.
    Xie C, Zhang Z, Wang D, Guan G, Gao D, Liu J (2006) Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal Chem 78:8339–8346CrossRefGoogle Scholar
  110. 110.
    Matzger AJ, Vaid TP, Lewis NS (1999) Vapor sensing with arrays of carbon black-polymer composites. Proc SPIE Int Soc Opt Eng 3710:315–320Google Scholar
  111. 111.
    Briglin SM, Burl MC, Freund MS, Lewis NS, Matzger AJ, Ortiz DN, Tokumaru P (2000) Progress in use of carbon-black-polymer composite vapor detector arrays for land mine detection. Proc SPIE Int Soc Opt Eng 4038:530–538Google Scholar
  112. 112.
    Pablos JL, Sarabia LA, Ortiz MC, Mendia A, Muñoz A, Serna F, García FC, García JM (2015) Selective detection and discrimination of nitro explosive vapors using an array of three luminescent sensory solid organic and hybrid polymer membranes. Sens Actuators B 212:18–27CrossRefGoogle Scholar
  113. 113.
    Woodka MD, Schnee VP, Polcha MP (2010) Fluorescent polymer sensor array for detection and discrimination of explosives in water. Anal Chem 82:9917–9924CrossRefGoogle Scholar
  114. 114.
    McGill RA, Mlsna TE, Chung R, Nguyen VK, Stepnowski J (2000) The design of functionalized silicone polymers for chemical sensor detection of nitroaromatic compounds. Sens Actuators B 65:5–9CrossRefGoogle Scholar
  115. 115.
    Kannan GK, Nimal AT, Mittal U, Yadava RDS, Kapoor JC (2004) Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection. Sens Actuators B 101:328–334CrossRefGoogle Scholar
  116. 116.
    Yang X, Du XX, Shi J, Swanson B (2001) Molecular recognition and self-assembled polymer films for vapour phase detection of explosives. Talanta 54:439–445CrossRefGoogle Scholar
  117. 117.
    Dorozhkin LM, Nefedov VA, Sabelnikov AG, Sevastjanov VG (2004) Detection of trace amounts of explosives and/or explosive related compounds on various surfaces by a new sensing technique/material. Sens Actuators B 99:568–570CrossRefGoogle Scholar
  118. 118.
    Pablos JL, Trigo-Lopez M, Serna F, García FC, García JM (2014) Solid polymer substrates and smart fibres for the selective visual detection of TNT both in vapour and in aqueous media. RSC Adv 4:25562–25568CrossRefGoogle Scholar
  119. 119.
    Pablos JL, Trigo-Lopez M, Serna F, García FC, García JM (2014) Water-soluble polymers, solid polymer membranes, and coated fibres as smart sensory materials for the naked eye detection and quantification of TNT in aqueous media. Chem Commun 50:2484–2487CrossRefGoogle Scholar
  120. 120.
    Kumar A, Pandey MK, Anandakathir R, Mosurkal R, Parmar VS, Watterson AC, Kumar J (2010) Sensory response of pegylated and siloxanated 4,8-dimethylcoumarins: a fluorescence quenching study by nitro aromatics. Sens Actuators B 147:105–110CrossRefGoogle Scholar
  121. 121.
    Demirel GB, Daglarac B, Bayindir M (2013) Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films. Chem Commun 49:6140–6142CrossRefGoogle Scholar
  122. 122.
    Liu J, Zhong Y, Lam JWY, Lu P, Hong Y, Yu Y, Yue Y, Faisal M, Sung HHY, Williams ID, Wong KS, Tang BZ (2010) Hyperbranched conjugated polysiloles: synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives. Macromolecules 43:4921–4936CrossRefGoogle Scholar
  123. 123.
    Liu J, Zhong Y, Lu P, Hong Y, Lam JWY, Faisal M, Yu Y, Wong KS, Tang BZ (2010) A superamplification effect in the detection of explosives by a fluorescent hyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics. Polym Chem 1:426–429CrossRefGoogle Scholar
  124. 124.
    Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 4332–4353Google Scholar
  125. 125.
    Shu W, Guan C, Guo W, Wang C, Shen Y (2012) Conjugated poly(aryleneethynylenesiloles) and their application in detecting explosives. J Mater Chem 22:3075–3081CrossRefGoogle Scholar
  126. 126.
    Zhang L-H, Jiang T, Wu L-B, Wan J-H, Chen C-H, Pei Y-B, Lu H, Deng Y, Bian G-F, Qiu H-Y, Lai G-Q (2012) 2,3,4,5-Tetraphenylsilole-based conjugated polymers: synthesis, optical properties, and as sensors for explosive compounds. Chem Asian J 7:1583–1593CrossRefGoogle Scholar
  127. 127.
    Qin A, Lam JWY, Tang L, Jim CKW, Zhao H, Sun J, Tang BZ (2009) Polytriazoles with aggregation-induced emission characteristics: synthesis by click polymerization and application as explosive chemosensors. Macromolecules 42:1421–1424CrossRefGoogle Scholar
  128. 128.
    Hu R, Lam JWY, Liu J, Sung HHY, Williams ID, Yue Z, Wong KS, Yuend MMF, Tang BZ (2012) Hyperbranched conjugated poly(tetraphenylethene): synthesis, aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection. Polym Chem 3:1481–1489CrossRefGoogle Scholar
  129. 129.
    Li J, Liu J, Lama JWY, Tang BZ (2013) Poly(arylene ynonylene) with an aggregation-enhanced emission characteristic: a fluorescent sensor for both hydrazine and explosive detection. RSC Adv 3:8193–8196CrossRefGoogle Scholar
  130. 130.
    Wang J, Mei J, Yuan W, Lu P, Qin A, Sun J, Mac Y, Tang BZ (2011) Hyperbranched polytriazoles with high molecular compressibility: aggregation-induced emission and superamplified explosive detection. J Mater Chem 21:4056–4059CrossRefGoogle Scholar
  131. 131.
    Wu JX, Li H, Xu B, Tong H, Wang L (2014) Solution-dispersed porous hyperbranched conjugated polymer nanoparticles for fluorescent sensing of TNT with enhanced sensitivity. Polym Chem 5:4521–4525CrossRefGoogle Scholar
  132. 132.
    Lock JP, Geraghty E, Kagumba LC, Mahmud KK (2009) Trace detection of peroxides using a microcantilever detector. Thin Solid Films 517:3584–3587CrossRefGoogle Scholar
  133. 133.
    Burks M, Hage DS (2009) Current trends in the detection of peroxide-based explosives. Anal Bioanal Chem 395:301–313CrossRefGoogle Scholar
  134. 134.
    Mills A, Grosshans P, Snadden E (2009) Hydrogen peroxide vapour indicator. Sens Actuators B 136:458–463CrossRefGoogle Scholar
  135. 135.
    Sanchez JC, Trogler WC (2008) Polymerization of a boronate-functionalized fluorophore by double transesterification: applications to fluorescence detection of hydrogen peroxide vapor. J Mater Chem 18:5134–5141CrossRefGoogle Scholar
  136. 136.
    Fang Y, Zhang D, Qina X, Miaoa Z, Takahashib S, Anzaib J-I, Chen Q (2012) A non-enzymatic hydrogen peroxide sensor based on poly(vinyl alcohol)–multiwalled carbon nanotubes–platinum nanoparticles hybrids modified glassy carbon electrode. Electrochim Acta 70:266–271CrossRefGoogle Scholar
  137. 137.
    Tian J, Li H, Lu W, Luo Y, Wanga L, Sun X (2011) Preparation of Ag nanoparticle-decorated poly(m-phenylenediamine) microparticles and their application for hydrogen peroxide detection. Analyst 136:1806–1809CrossRefGoogle Scholar
  138. 138.
    Wu Z, Yang S, Chen Z, Zhang T, Guo T, Wang Z, Liao F (2013) Synthesis of Ag nanoparticles-decorated poly(m-phenylenediamine) hollow spheres and the application for hydrogen peroxide detection. Electrochim Acta 98:104–108CrossRefGoogle Scholar
  139. 139.
    Li C, Hu J, Liu T, Liu S (2011) Stimuli-triggered off/on switchable complexation between a novel type of charge-generation polymer (CGP) and gold nanoparticles for the sensitive colorimetric detection of hydrogen peroxide and glucose. Macromolecules 44:429–431CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • José M. García
    • 1
    Email author
  • Jesús L. Pablos
    • 1
    • 2
  • Félix C. García
    • 1
  • Felipe Serna
    • 1
  1. 1.Departamento de Química, Facultad de CienciasUniversidad de BurgosBurgosSpain
  2. 2.Polymer Photochemistry Group, Instituto de Ciencia y Tecnología de Polímeros, C.S.I.C.MadridSpain

Personalised recommendations