Advertisement

Optical Sensor Coating Development for Industrial Applications

  • Larissa Brentano Capeletti
  • João Henrique Zimnoch dos SantosEmail author
Chapter

Abstract

Optical sensors are important for in situ and ex situ monitoring in industrial processes and environmental control. The development of these tools involves the immobilization of a sensitive element within a matrix. Therefore, the sol-gel process represents a powerful strategy for developing and improving optical sensors, especially those for coating applications. This approach allows the use of several strategies in terms of different synthetic routes and the production of hybrid matrices, which can help to produce highly specific sensors and solve problems such as receptor element leaching. Controlling the textural characteristics allows for tuning of the matrix permeability of analytes to the receptor element without leaching from the network or affecting the receptor identity or functionality. The introduction of organic moieties appears to be a good alternative for providing systems with differentiated characteristics (i.e., performance). Here, recent results describing sol-gel hybrid optical coating sensors are reviewed to demonstrate their state-of-the-art industrial applications for gases, pH, solvents, and ionic species monitoring.

Keywords

Optical sensors Sol-gel Silica Industrial application 

References

  1. 1.
    Lobnik A, Wolfbeis OS (2001) J Sol-Gel Sci Technol 20(3):303–311CrossRefGoogle Scholar
  2. 2.
    Hulanicki A, Glab S, Ingman F (1991) Pure Appl Chem 63(9):1247–1250CrossRefGoogle Scholar
  3. 3.
    Eggins BR (2002) Chemical sensors and biosensors. Wiley, ChinchesterGoogle Scholar
  4. 4.
    Wolfbeis OS, Reisfeld R, Oehme I (1996) Sol-gels and chemical sensors, vol 85. Springer, BerlinGoogle Scholar
  5. 5.
    Wolfbeis OS (1991) Fiber optic chemical sensors and biosensors. CRC Press, Boca Raton, FLGoogle Scholar
  6. 6.
    Jeronimo PCA, Araujo AN, Montenegro M (2007) Talanta 72(1):13–27CrossRefGoogle Scholar
  7. 7.
    Gründler P (2007) Chemical sensors – an introduction for scientists and engineers. Springer, BerlinGoogle Scholar
  8. 8.
    Brinker CJ, Scherer GW (1990) Sol-gel science – the physics and chemistry of sol-gel processing. Academic Press, San Diego, CAGoogle Scholar
  9. 9.
    Vioux A, Mutin PH (2004) Handbook of sol-gel science and technology, vol I. Kluwer, New York, NYGoogle Scholar
  10. 10.
    Schubert U, Hüsing N (2005) Synthesis of inorganic materials. Wiley, WeinheimGoogle Scholar
  11. 11.
    Alqasaimeh M, Heng LY, Ahmad M, Raj ASS, Ling TL (2014) Sensors 14(7):13186–13209CrossRefGoogle Scholar
  12. 12.
    El-Nahhal IM, Zourab SM, Kodeh FS, Abdelsalam FH (2014) J Sol-Gel Sci Technol 71(1):16–23CrossRefGoogle Scholar
  13. 13.
    LaGasse MK, Rankin JM, Askim JR, Suslick KS (2014) Sens Actuator B Chem 197:116–122CrossRefGoogle Scholar
  14. 14.
    Samadi-Maybodi A, Rezaei V (2014) Sens Actuator B Chem 199:418–423CrossRefGoogle Scholar
  15. 15.
    Korzeniowska B, Woolley R, DeCourcey J, Wencel D, Loscher CE, McDonagh C (2014) J Biomed Nanotechnol 10(7):1336–1345CrossRefGoogle Scholar
  16. 16.
    Reddaiah K, Reddy TM (2014) J Mol Liq 196:77–85CrossRefGoogle Scholar
  17. 17.
    Zhang HR, Lei BF, Liu YL, Liu XT, Zheng MT, Dong HW, Xiao Y, Zhang JY (2014) J Nanosci Nanotechnol 14(6):4615–4621CrossRefGoogle Scholar
  18. 18.
    Albanese D, Sannini A, Malvano F, Pilloton R, Di Matteo M (2014) Food Anal Methods 7(5):1002–1008CrossRefGoogle Scholar
  19. 19.
    Maroneze CM, Rahim A, Fattori N, da Costa LP, Sigoli FA, Mazali IO, Custodio R, Gushikem Y (2014) Electrochim Acta 123:435–440CrossRefGoogle Scholar
  20. 20.
    Motorina A, Tananaiko O, Kozytska I, Raks V, Badia R, Diaz-Garcia ME, Zaitsev VN (2014) Sens Actuator B Chem 200:198–205CrossRefGoogle Scholar
  21. 21.
    Sanchez C, Shea KJ, Kitagawa S (2011) Chem Soc Rev 40(2):471–472CrossRefGoogle Scholar
  22. 22.
    Kickelbick G (2007) Hybrid materials synthesis, characterization and applications. Wiley, WeinheimGoogle Scholar
  23. 23.
    Wolfbeis OS (2004) Anal Chem 76(12):3269–3283CrossRefGoogle Scholar
  24. 24.
    Lee K, Asher SA (2000) J Am Chem Soc 122(39):9534–9537CrossRefGoogle Scholar
  25. 25.
    Capeletti L, Dos Santos J, Moncada E (2012) J Sol-Gel Sci Technol 64:209–218Google Scholar
  26. 26.
    Capeletti LB, Bertotto FL, Dos Santos JHZ, Moncada E, Cardoso MB (2010) Sens Actuators B 151(1):169–176CrossRefGoogle Scholar
  27. 27.
    Kowada Y, Ozeki T, Minami T (2005) J Sol-Gel Sci Technol 33(2):175–185CrossRefGoogle Scholar
  28. 28.
    Capeletti LB (2014) Federal University of Rio Grande do Sul, Porto Alegre, BrasilGoogle Scholar
  29. 29.
    Monton MRN, Forsberg EM, Brennan JD (2012) Chem Mater 24(5):796–811CrossRefGoogle Scholar
  30. 30.
    Walcarius A, Collinson M (2009) Annu Rev Anal Chem 2:121–143CrossRefGoogle Scholar
  31. 31.
    Meng Q, Han T, Wang G, Zheng N, Cao C, Xie S (2014) Sens Actuator B Chem 196:238–244CrossRefGoogle Scholar
  32. 32.
    Tyszkiewicz C, Karasinski P, Rogoziski R (2012) Acta Phys Pol A 122(5):908–914CrossRefGoogle Scholar
  33. 33.
    Zhao Z, Duan Y (2011) Sens Actuator B Chem 160(1):1340–1345CrossRefGoogle Scholar
  34. 34.
    Samadi-Maybodi A, Rezaei V, Rastegarzadeh S (2015) Spectrochim Acta A 136:832–837CrossRefGoogle Scholar
  35. 35.
    Guillemain H, Rajarajan M, Lin YC, Chen CT, Sun T, Grattan KTV (2013) Measurement 46(8):2971–2977CrossRefGoogle Scholar
  36. 36.
    Chen X, Gu Z (2013) Sens Actuator B Chem 178:207–211CrossRefGoogle Scholar
  37. 37.
    Jeon D, Yoo W, Seo J, Shin S, Han K-T, Kim S, Park J-Y, Lee B (2013) Opt Rev 20(2):209–213CrossRefGoogle Scholar
  38. 38.
    Hiruta Y, Yoshizawa N, Citterio D, Suzuki K (2012) Anal Chem 84(24):10650–10656CrossRefGoogle Scholar
  39. 39.
    Kassal P, Šurina R, Vrsaljko D, Steinberg I (2014) J Sol-Gel Sci Technol 69(3):586–595CrossRefGoogle Scholar
  40. 40.
    Chauhan SS, Jasra RV, Sharma AL (2012) Ind Eng Chem Res 51(31):10381–10389CrossRefGoogle Scholar
  41. 41.
    Chu C-S, Lin C-A (2014) Sens Actuator B Chem 195:259–265CrossRefGoogle Scholar
  42. 42.
    Chu C-S, Lin T-H (2014) Sens Actuator B Chem 202:508–515CrossRefGoogle Scholar
  43. 43.
    Mensing JP, Wisitsoraat A, Tuantranont A, Kerdcharoen T (2013) Sens Actuator B Chem 176:428–436CrossRefGoogle Scholar
  44. 44.
    Mcevoy A, Maccraith B, Mcdonagh C, Von Bultzingslowen C, Von Bultzingslowen O (2006) US 20060257094Google Scholar
  45. 45.
    Korent US, Lobnik A (2012) WO2012071019-A1Google Scholar
  46. 46.
    Dong S, Cheng W (2006) CN1908633-AGoogle Scholar
  47. 47.
    Moore CP, Robert J, Blue RG, Stewart G, Robert JC (1997) EP793091-A1Google Scholar
  48. 48.
    Capeletti LB, Dos Santos JHZ, Moncada E (2013) EP2617764Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Larissa Brentano Capeletti
    • 1
  • João Henrique Zimnoch dos Santos
    • 1
    Email author
  1. 1.Instituto de Química, UFRGSPorto AlegreBrazil

Personalised recommendations