Skip to main content

Smart Self-Healing Polymer Coatings: Mechanical Damage Repair and Corrosion Prevention

  • Chapter
  • First Online:
Book cover Industrial Applications for Intelligent Polymers and Coatings

Abstract

Self-healing polymers are special category of smart materials where its properties change in response to an environmental stimulus. These materials have the capability to repair themselves when they are damaged without the need for any external intervention. In the first part, the principles and fundamentals of various types of smart coatings, materials, design, and processing methods are described. In the second part, various strategies to heal the mechanical damage have been targeted. Employing intrinsic self-healing materials with inherent bonding reversibility of the polymer matrix is the most important strategy which has been reviewed in this section. In the third part, the microencapsulation approaches to self-healing polymer development will be reviewed. This section will characterize polymer coatings that are classified as self-healing, based upon self-healing agents that are microencapsulated, active inhibitors loaded into nanoparticles, as well as nanocontainers and polymers that are constructed by the layer-by-layer (LbL) method. Finally, corrosion inhibitors that rely upon controlling micro- and nanoreservoirs release for the intercalation or encapsulation will be also reviewed. In this regard, application of layered double hydroxides (LDHs), porous nanoparticles, hollow spheres, zeolites, bentonite, and montmorillonite with active corrosion inhibitors are to be explained as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley, Weinheim. ISBN 98-3-527-31829-2

    Google Scholar 

  2. Kessler MR (2007) Self-healing: a new paradigm in materials design. Proc Inst Mech Eng G J Aerosp Eng 221:479–495

    Article  Google Scholar 

  3. Youngblood JP, Sottos NR (2008) Bioinspired materials for self-cleaning and self-healing. MRS Bull 33:732–741

    Article  Google Scholar 

  4. White SR, Caruso MM, Moore JS (2008) Autonomic healing of polymers. MRS Bull 33:766–769

    Article  Google Scholar 

  5. Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522

    Article  Google Scholar 

  6. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  Google Scholar 

  7. Caruso MM, Delafuente DA, Ho V, Sottos NR, Moore JS, White SR (2007) Solvent-promoted self-healing epoxy materials. Macromolecules 40:8830–8832

    Article  Google Scholar 

  8. Thie C (2004) microencapsulation, Encyclopedia of polymer science and technology. Wiley, New York

    Google Scholar 

  9. Benita S (2005) Microencapsulation: methods and industrial applications. CRC Press, Boca Raton, FL. ISBN 10-0-8247-2317-1

    Book  Google Scholar 

  10. Arshady R (1999) Microspheres, microcapsules and liposomes: general concepts and criteria. MML Ser 1:11

    Google Scholar 

  11. Dry C (1996) Procedures developed for self-repair of polymer matrix composite materials. Compos Struct 35:263–269

    Article  Google Scholar 

  12. Hucker M, Bond I, Foreman A, Hudd J (1999) Optimisation of hollow glass fibres and their composites. Adv Compos Lett 8:181–189

    Google Scholar 

  13. Trask RS, Bond IP (2006) Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater Struct 15:704

    Article  Google Scholar 

  14. Pang JWC, Bond IP (2005) Bleeding composites—damage detection and self-repair using a biomimetic approach. Compos A Appl Sci Manuf 36:183–188

    Article  Google Scholar 

  15. Pang JWC, Bond IP (2005) A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos Sci Technol 65:1791–1799

    Article  Google Scholar 

  16. Williams HR, Trask RS, Bond IP (2006) Vascular self-healing composite sandwich structures. In: Fifteenth United States national congress of theoretical and applied mechanics, 25–31 June

    Google Scholar 

  17. Williams G, Trask R, Bond I (2007) A self-healing carbon fibre reinforced polymer for aerospace applications. Compos A Appl Sci Manuf 38:1525–1532

    Article  Google Scholar 

  18. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally remendable cross-linked polymeric material. Science 295:1698–1702

    Article  Google Scholar 

  19. Chen X, Wudl F, Mal AK, Shen H, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36:1802–1807

    Article  Google Scholar 

  20. Chujo Y, Sada K, Naka A, Nomura R, Saegusa T (1993) Synthesis and redox gelation of disulfide-modified polyoxazoline. Macromolecules 26:883–887

    Article  Google Scholar 

  21. Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions. J Am Chem Soc 132:12051–12058

    Article  Google Scholar 

  22. Lange RFM, Meijer EW (1996) Supramolecular polymer interactions using melamine. Macromol Symp 102:301–308

    Article  Google Scholar 

  23. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Supramolecular polymers. Chem Rev 101:4071–4098

    Article  Google Scholar 

  24. Eisenberg A, Kim J-S (1998) Introduction to ionomers. Wiley, New York

    Google Scholar 

  25. Eisenberg A (2012) Ion-containing polymers: physical properties and structure, vol 2. Elsevier

    Google Scholar 

  26. Plaisted TA, Amirkhizi AV, Arbelaez D, Nemat-Nasser SC (2003) Self-healing structural composites with electromagnetic functionality. In: Proc. SPIE 5054, Smart structures and materials 2003: Industrial and commercial applications of smart structures technologies, 372 (August 12, 2003); doi:10.1117/12.483894

  27. Williams KA, Boydston AJ, Bielawski CW (2007) Towards electrically conductive, self-healing materials. J R Soc Interface 4:359–362

    Article  Google Scholar 

  28. Luo X, Mather PT (2013) Shape memory assisted self-healing coating. ACS Macro Lett 2:152–156

    Article  Google Scholar 

  29. Kirkby EL, Michaud VJ, Månson J-A, Sottos NR, White SR (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer (Guildf) 50:5533–5538

    Article  Google Scholar 

  30. Neuser S, Michaud V, White SR (2012) Improving solvent-based self-healing materials through shape memory alloys. Polymer (Guildf) 53:370–378

    Article  Google Scholar 

  31. Yari H, Mohseni M, Ramezanzadeh B (2009) Comparisons of weathering performance of two automotive refinish coatings: a case study. J Appl Polym Sci 111:2946–2956

    Article  Google Scholar 

  32. Ramezanzadeh B, Mohseni M, Yari H, Sabbaghian S (2009) An evaluation of an automotive clear coat performance exposed to bird droppings under different testing approaches. Prog Org Coat 66:149–160

    Article  Google Scholar 

  33. Keller MW, White SR, Sottos NR (2007) A self-healing poly(dimethyl siloxane) elastomer. Adv Funct Mater 17:2399–2404

    Article  Google Scholar 

  34. Cho SH, Andersson HM, White SR, Sottos NR, Braun PV (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997–1000

    Article  Google Scholar 

  35. Beiermann BAA, Keller MWW, Sottos NRR (2009) Self-healing flexible laminates for resealing of puncture damage. Smart Mater Struct 18:85001

    Article  Google Scholar 

  36. Wang W, Xu L, Li X, Lin Z, Yang Y, An E (2014) Self-healing mechanisms of water triggered smart coating in seawater. J Mater Chem A 2:1914–1921

    Article  Google Scholar 

  37. Yang J, Keller MW, Moore JS, White SR, Sottos NR (2008) Microencapsulation of isocyanates for self-healing polymers. Macromolecules 41:9650–9655

    Article  Google Scholar 

  38. Kim H, Park S (2007) Preparation and properties of microcapsule with EVA core-PU shell structure. J Appl Polym Sci 103:893–902

    Article  Google Scholar 

  39. Caruso MM, Blaiszik BJ, Jin H, Schelkopf SR, Stradley DS, Sottos NR, White SR, Moore JS (2010) Robust, double-walled microcapsules for self-healing polymeric materials. ACS Appl Mater Interfaces 2:1195–1199

    Article  Google Scholar 

  40. Bai N, Simon GP, Saito K (2013) Investigation of the thermal self-healing mechanism in a cross-linked epoxy system. RSC Adv 3:20699

    Article  Google Scholar 

  41. Bai N, Saito K, Simon GP (2013) Synthesis of a diamine cross-linker containing Diels–Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym Chem 4:724–730

    Article  Google Scholar 

  42. Kashif M, Chang Y-W (2015) Supramolecular thermoplastic elastomer with thermally scratch repairable effect from 3-amino-1,2,4-triazole crosslinked maleated polyethylene-octene elastomer/nylon 12 blends. J Appl Polym Sci 132

    Google Scholar 

  43. Bosman AW, Sijbesma RP, Meijer EW (2004) Supramolecular polymers at work. Mater Today 7:34–39

    Article  Google Scholar 

  44. Yari H, Mohseni M, Messori M, Ranjbar Z (2014) Tribological properties and scratch healing of a typical automotive nano clearcoat modified by a polyhedral oligomeric silsesquioxane compound. Eur Polym J 60:79–91

    Article  Google Scholar 

  45. Dimopoulos A, Wietor J-L, Wübbenhorst M, Napolitano S, van Benthem RATM, de With G, Sijbesma RP (2010) Enhanced mechanical relaxation below the glass transition temperature in partially supramolecular networks. Macromolecules 43:8664–8669

    Article  Google Scholar 

  46. Neal J, Mozhdehi D, Guan Z (2015) Enhancing mechanical performance of a covalent self-healing material by sacrificial non-covalent bonds. J Am Chem Soc 137(14):4846–4850

    Article  Google Scholar 

  47. Hart LR, Hunter JH, Nguyen NA, Harries JL, Greenland BW, Mackay ME, Colquhoun HM, Hayes W (2014) Multivalency in healable supramolecular polymers: the effect of supramolecular cross-link density on the mechanical properties and healing of non-covalent polymer networks. Polym Chem 5:3680–3688

    Article  Google Scholar 

  48. Wei Q, Schlaich C, Prévost S, Schulz A, Böttcher C, Gradzielski M, Qi Z, Haag R, Schalley CA (2014) Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces. Adv Mater 26:7358–7364

    Article  Google Scholar 

  49. Lii C-Y, Liaw SC, Lai VM-F, Tomasik P (2002) Xanthan gum–gelatin complexes. Eur Polym J 38:1377–1381

    Article  Google Scholar 

  50. Shulkin A, Stover HD (2002) Polymer microcapsules by interfacial polyaddition between styrene–maleic anhydride copolymers and amines. J Membr Sci 209:421–432

    Article  Google Scholar 

  51. Brown EN, Kessler MR, Sottos NR, White SR (2003) In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20:719–730

    Article  Google Scholar 

  52. Alexandridou CKFMAFS, Kiparissides C, Mange F, Foissy A (2008) Surface characterization of oil-containing polyterephthalamide microcapsules prepared by Interfacial polymerization. J Microencapsul 18(6):767–781

    Article  Google Scholar 

  53. Toubeli A, Kiparissides C (1998) Synthesis and characterization of polyterephthalamide membranes for encapsulation use: effect of the amine type and composition on the membrane permeability. J Membr Sci 146:15–29

    Article  Google Scholar 

  54. Frere W, Danicher L, Gramain P (1998) Preparation of polyurethane microcapsules by interfacial polycondensation. Eur Polym J 34:193–199

    Article  Google Scholar 

  55. Hong K, Park S (1999) Preparation of polyurethane microcapsules with different soft segments and their characteristics. React Funct Polym 42:193–200

    Article  Google Scholar 

  56. Kim IH, Seo JB, Kim YJ (2002) Preparation and characterization of polyurethane microcapsules containing functional oil. Polymer (Korea) 26:400–409

    Google Scholar 

  57. Kwon J-Y, Kim H-D (2006) Preparation and application of polyurethane-urea microcapsules containing phase change materials. Fibers Polym 7:12–19

    Article  Google Scholar 

  58. Hong K, Park S (2000) Characterization of ovalbumin-containing polyurethane microcapsules with different structures. Polym Test 19:975–984

    Article  Google Scholar 

  59. Crespy D, Stark M, Hoffmann-Richter C, Ziener U, Landfester K (2007) Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromolecules 40:3122–3135

    Article  Google Scholar 

  60. Hernandez-Barajas J, Hunkeler D (1997) Heterophase water-in-oil polymerization of acrylamide by a hybrid inverse-emulsion/inverse-microemulsion process. Polymer (Guildf) 38:5623–5641

    Article  Google Scholar 

  61. Müller K, Klapper M, Müllen K (2007) Preparation of high molecular weight polyurethane particles by nonaqueous emulsion polyaddition. Colloid Polym Sci 285:1157–1161

    Article  Google Scholar 

  62. Klapper M, Nenov S, Haschick R, Müller K, Müllen K (2008) Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles. Acc Chem Res 41:1190–1201

    Article  Google Scholar 

  63. Kobaslija M, McQuade DT (2006) Polyurea microcapsules from oil-in-oil emulsions via interfacial polymerization. Macromolecules 39:6371–6375

    Article  Google Scholar 

  64. Shukla PG, Kalidhass B, Shah A, Palaskar DV (2002) Preparation and characterization of microcapsules of water-soluble pesticide monocrotophos using polyurethane as carrier material. J Microencapsul 19(3):293–304

    Article  Google Scholar 

  65. Hatami Boura S, Peikari M, Ashrafi A, Samadzadeh M (2012) Self-healing ability and adhesion strength of capsule embedded coatings—micro and nano sized capsules containing linseed oil. Prog Org Coat 75:292–300

    Article  Google Scholar 

  66. Kouhi M, Mohebbi A, Mirzaei M, Peikari M (2013) Optimization of smart self-healing coatings based on micro/nanocapsules in heavy metals emission inhibition. Prog Org Coat 76:1006–1015

    Article  Google Scholar 

  67. Wang R, Li H, Hu H, He X, Liu W (2009) Preparation and characterization of self-healing microcapsules with poly(urea-formaldehyde) grafted epoxy functional group shell. J Appl Polym Sci 113:1501–1506

    Article  Google Scholar 

  68. Latnikova A (2012) Polymeric capsules for self-healing anticorrosion coatings. Universität Potsdam, den 10

    Google Scholar 

  69. Nesterova T, Dam-Johansen K, Pedersen LT, Kiil S (2012) Microcapsule-based self-healing anticorrosive coatings: capsule size, coating formulation, and exposure testing. Prog Org Coat 75:309–318

    Article  Google Scholar 

  70. Suryanarayana C, Rao KC, Kumar D (2008) Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog Org Coat 63:72–78

    Article  Google Scholar 

  71. Jadhav RS, Mane V, Bagle AV, Hundiwale DG, Mahulikar PP, Waghoo G (2013) Synthesis of multicore phenol formaldehyde microcapsules and their application in polyurethane paint formulation for self-healing anticorrosive coating. Int J Ind Chem 4:31

    Article  Google Scholar 

  72. Jadhav RS, Hundiwale DG, Mahulikar PP (2011) Synthesis and characterization of phenol-formaldehyde microcapsules containing linseed oil and its use in epoxy for self-healing and anticorrosive coating. J Appl Polym Sci 119:2911–2916

    Article  Google Scholar 

  73. Mirabedini SM, Dutil I, Farnood RR (2012) Preparation and characterization of ethyl cellulose-based core–shell microcapsules containing plant oils. Colloids Surfaces A Physicochem Eng Asp 394:74–84

    Article  Google Scholar 

  74. Nesterova T, Dam-Johansen K, Kiil S (2011) Synthesis of durable microcapsules for self-healing anticorrosive coatings: a comparison of selected methods. Prog Org Coat 70:342–352

    Article  Google Scholar 

  75. Koh E, Lee S, Shin J, Kim Y-W (2013) Renewable polyurethane microcapsules with isosorbide derivatives for self-healing anticorrosion coatings. Ind Eng Chem Res 52:15541–15548

    Article  Google Scholar 

  76. Kopec M, Szczepanowicz K, Mordarski G, Podgorna K, Socha RP, Nowak P, Warszyński P, Hack T (2015) Self-healing epoxy coatings loaded with inhibitor-containing polyelectrolyte nanocapsules. Prog Org Coat 84:97–106

    Article  Google Scholar 

  77. Raps D, Hack T, Kolb M, Zheludkevich ML, Nuyken O (2010) Development of corrosion protection coatings for AA2024-T3 using micro-encapsulated inhibitors. ACS Symp Ser 1050:165–189

    Article  Google Scholar 

  78. Shchukin DG, Zheludkevich M, Yasakau K, Lamaka S, Ferreira MGS, Moehwald H (2006) Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv Mater 18:1672–1678

    Article  Google Scholar 

  79. Sonawane SH, Bhanvase BA, Jamali AA, Dubey SK, Kale SS, Pinjari DV et al (2012) Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazole. Chem Eng J 189:464–472

    Article  Google Scholar 

  80. Bhanvase BA, Patel MA, Sonawane SH (2014) Corros Sci 88:170–177

    Article  Google Scholar 

  81. Shchukin DG (2013) Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition. Polym Chem 4:4871–4877

    Article  Google Scholar 

  82. Ma J, Cui B, Dai J, Li D (2011) Mechanism of adsorption of anionic dye from aqueous solutions onto organobentonite. J Hazard Mater 186:1758–1765

    Article  Google Scholar 

  83. Shi X, Nguyen TA, Suo Z, Liu Y, Avci R (2009) Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf Coat Technol 204:237–245

    Article  Google Scholar 

  84. Williams G, McMurray HN, Loveridge MJ (2010) Inhibition of corrosion-driven organic coating disbondment on galvanised steel by smart release group II and Zn(II)-exchanged bentonite pigments. Electrochim Acta 55:1740–1748

    Article  Google Scholar 

  85. Motte C, Poelman M, Roobroeck A, Fedel M, Deflorian F, Olivier MG (2012) Improvement of corrosion protection offered to galvanized steel by incorporation of lanthanide modified nanoclays in silane layer. Prog Org Coat 74:326–333

    Article  Google Scholar 

  86. Hang TTX, Truc TA, Olivier MG, Vandermiers C, Guérit N, Pébre N (2010) Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay. Prog Org Coat 69:410–416

    Article  Google Scholar 

  87. Ahmed NM, Emira HS, Selim MM (2011) Anticorrosive performance of ion-exchange zeolites in alkyd-based paints. Pigment Resin Technol 40:91–99

    Article  Google Scholar 

  88. Ghazi A, Ghasemi E, Mahdavian M, Ramezanzadeh B, Rostami M (2015) The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating. Corros Sci 94:207–217

    Article  Google Scholar 

  89. Weller M, Overton T, Rourke J, Armstrong F (2014) Inorganic chemistry, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  90. Deka RC, Tajima N, Hirao K (2001) Influence of isomorphous substitution on acidity of zeolites: ab initio and density functional studies. J Mol Struct 535:31–38

    Article  Google Scholar 

  91. Williams G, Geary S, McMurray HN (2012) Smart release corrosion inhibitor pigments based on organic ion-exchange resins. Corros Sci 57:139–147

    Article  Google Scholar 

  92. Roselli S, Bellotti N, Deyá C, Revuelta M, del Amo B, Romagnoli R (2014) Lanthanum-exchanged zeolite and clay as anticorrosive pigments for galvanized stee. J Rare Earths 32:352–359

    Article  Google Scholar 

  93. Ferrer EL, Rollon AP, Mendoza HD, Lafont U, Garcia SJ (2014) Double-doped zeolites for corrosion protection of aluminium alloys. Microporous Mesoporous Mater 188:8–15

    Article  Google Scholar 

  94. Cho MS, Shin B, Choi SD, Lee Y, Song KG (2004) Gel polymer electrolyte nanocomposites PEGDA with Mg-Al layered double hydroxides. Electrochim Acta 50:331–334

    Article  Google Scholar 

  95. Zheludkevich MLL, Poznyak SKK, Rodrigues LMM, Raps D, Hack T, Dick LFF, Nunes T, Ferreira MGSGS (2010) Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros Sci 52:602–611

    Article  Google Scholar 

  96. Poznyak SK, Tedim J, Rodrigues LM, Salak AN, Zheludkevich ML, Dick LFP, Ferreira MGS (2009) Novel inorganic host layered double hydroxides intercalated with guest organic inhibitors for anticorrosion applications. ACS Appl Mater Interfaces 1:2353–2362

    Article  Google Scholar 

  97. Li D, Wang F, Yu X, Wang J, Liu Q, Yang P, He Y, Wang Y, Zhang M (2011) Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate. Prog Org Coat 71:302–309

    Article  Google Scholar 

  98. Hang TTX, Truc TA, Duong NT, Vu PG, Hoang T (2012) Preparation and characterization of nanocontainers of corrosion inhibitor based on layered double hydroxides. Appl Clay Sci 67–68:18–25

    Article  Google Scholar 

  99. Hang TTX, Truc TA, Duong NT, Pébre N, Olivier MG (2012) Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel. Prog Org Coat 74:343–348

    Article  Google Scholar 

  100. Armstrong JA, Dann SE (2000) Investigation of zeolite scales formed in the Bayer process. Microporous Mesoporous Mater 41:89–97

    Article  Google Scholar 

  101. Dong Y, Lisco B, Wu H, Koo JH, Krifa M (2015) Flame retardancy and mechanical properties of ferrum ammonium phosphate–halloysite/epoxy polymer nanocomposites. J Appl Polym Sci 132(13). doi:10.1002/APP.41681

    Google Scholar 

  102. Zhao Y, Abdullayev E, Vasiliev A, Lvov Y (2013) Halloysite nanotubule clay for efficient water purification. J Colloid Interface Sci 406:121–129

    Article  Google Scholar 

  103. Lvov YM, Shchukin DG, Mo H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820

    Article  Google Scholar 

  104. Andreeva DV, Shchukin DG (2008) Smart self-repairing protective coatings. Mater Today 11:24–30

    Article  Google Scholar 

  105. Shchukin DG, Möhwald H (2007) Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Adv Funct Mater 17:1451–1458

    Article  Google Scholar 

  106. Abdullayev E, Abbasov V, Tursunbayeva A, Portnov V, Ibrahimov H, Mukhtarova G, Lvov Y (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. Appl Mater Interfaces 5:4464–4471

    Google Scholar 

  107. Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Ferreira MGS, Möhwald H (2008) Active anticorrosion coatings with halloysite nanocontainers. J Phys Chem C 112:958–964

    Article  Google Scholar 

  108. Zheludkevich ML, Serra R, Montemor MF, Ferreira MGS (2005) Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors. Electrochem Commun 7:836–840

    Article  Google Scholar 

  109. Tavandashti NP, Sanjabi S (2010) Corrosion study of hybrid sol-gel coatings containing boehmite nanoparticles loaded with cerium nitrate corrosion inhibitor. Prog Org Coat 69:384–391

    Article  Google Scholar 

  110. Skorb EV, Fix D, Andreeva DV, Möhwald H, Shchukin DG (2009) Surface-modified mesoporous SiO2 containers for corrosion protection. Adv Funct Mater 19:2373–2379

    Article  Google Scholar 

  111. Saremi M, Yeganeh M (2014) Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings. Corros Sci 86:159–170

    Article  Google Scholar 

  112. Montemor MFF, Snihirova DVV, Taryba MGG, Lamaka SVV, Kartsonakis IAA, Balaskas ACC, Kordas GCC, Tedim J, Kuznetsova A, Zheludkevich MLL, Ferreira MGSGS (2012) Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochim Acta 60:31–40

    Article  Google Scholar 

  113. Li GL, Zheng Z, Möhwald H, Shchukin DG (2013) Silica/polymer double-walled hybrid nanotubes: synthesis and application as stimuli-responsive nanocontainers in self-healing coatings. ACS Nano 7:2470–2478

    Article  Google Scholar 

  114. Snavely J, Earl S (1988) Method for scale and corrosion inhibition in a well penetrating a subterranean formation. US Patent 4779679

    Google Scholar 

  115. Khramov AN, Voevodin NN, Balbyshev VN, Donley MS (2004) Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors. Thin Solid Films 447–448:549–557

    Article  Google Scholar 

  116. Khramov AN, Voevodin NN, Balbyshev VN, Mantz RA (2005) Sol-gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors. Thin Solid Films 483:191–196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Ramezanzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kardar, P., Yari, H., Mahdavian, M., Ramezanzadeh, B. (2016). Smart Self-Healing Polymer Coatings: Mechanical Damage Repair and Corrosion Prevention. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_24

Download citation

Publish with us

Policies and ethics