Advertisement

Smart Self-Healing Polymer Coatings: Mechanical Damage Repair and Corrosion Prevention

  • Pooneh Kardar
  • Hossein Yari
  • Mohammad Mahdavian
  • Bahram RamezanzadehEmail author
Chapter

Abstract

Self-healing polymers are special category of smart materials where its properties change in response to an environmental stimulus. These materials have the capability to repair themselves when they are damaged without the need for any external intervention. In the first part, the principles and fundamentals of various types of smart coatings, materials, design, and processing methods are described. In the second part, various strategies to heal the mechanical damage have been targeted. Employing intrinsic self-healing materials with inherent bonding reversibility of the polymer matrix is the most important strategy which has been reviewed in this section. In the third part, the microencapsulation approaches to self-healing polymer development will be reviewed. This section will characterize polymer coatings that are classified as self-healing, based upon self-healing agents that are microencapsulated, active inhibitors loaded into nanoparticles, as well as nanocontainers and polymers that are constructed by the layer-by-layer (LbL) method. Finally, corrosion inhibitors that rely upon controlling micro- and nanoreservoirs release for the intercalation or encapsulation will be also reviewed. In this regard, application of layered double hydroxides (LDHs), porous nanoparticles, hollow spheres, zeolites, bentonite, and montmorillonite with active corrosion inhibitors are to be explained as well.

Keywords

Self-healing polymer coatings Mechanical damages Reversible cross-links Corrosion inhibition Nanoreservoirs 

References

  1. 1.
    Ghosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley, Weinheim. ISBN 98-3-527-31829-2Google Scholar
  2. 2.
    Kessler MR (2007) Self-healing: a new paradigm in materials design. Proc Inst Mech Eng G J Aerosp Eng 221:479–495CrossRefGoogle Scholar
  3. 3.
    Youngblood JP, Sottos NR (2008) Bioinspired materials for self-cleaning and self-healing. MRS Bull 33:732–741CrossRefGoogle Scholar
  4. 4.
    White SR, Caruso MM, Moore JS (2008) Autonomic healing of polymers. MRS Bull 33:766–769CrossRefGoogle Scholar
  5. 5.
    Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522CrossRefGoogle Scholar
  6. 6.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797CrossRefGoogle Scholar
  7. 7.
    Caruso MM, Delafuente DA, Ho V, Sottos NR, Moore JS, White SR (2007) Solvent-promoted self-healing epoxy materials. Macromolecules 40:8830–8832CrossRefGoogle Scholar
  8. 8.
    Thie C (2004) microencapsulation, Encyclopedia of polymer science and technology. Wiley, New YorkGoogle Scholar
  9. 9.
    Benita S (2005) Microencapsulation: methods and industrial applications. CRC Press, Boca Raton, FL. ISBN 10-0-8247-2317-1CrossRefGoogle Scholar
  10. 10.
    Arshady R (1999) Microspheres, microcapsules and liposomes: general concepts and criteria. MML Ser 1:11Google Scholar
  11. 11.
    Dry C (1996) Procedures developed for self-repair of polymer matrix composite materials. Compos Struct 35:263–269CrossRefGoogle Scholar
  12. 12.
    Hucker M, Bond I, Foreman A, Hudd J (1999) Optimisation of hollow glass fibres and their composites. Adv Compos Lett 8:181–189Google Scholar
  13. 13.
    Trask RS, Bond IP (2006) Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater Struct 15:704CrossRefGoogle Scholar
  14. 14.
    Pang JWC, Bond IP (2005) Bleeding composites—damage detection and self-repair using a biomimetic approach. Compos A Appl Sci Manuf 36:183–188CrossRefGoogle Scholar
  15. 15.
    Pang JWC, Bond IP (2005) A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos Sci Technol 65:1791–1799CrossRefGoogle Scholar
  16. 16.
    Williams HR, Trask RS, Bond IP (2006) Vascular self-healing composite sandwich structures. In: Fifteenth United States national congress of theoretical and applied mechanics, 25–31 JuneGoogle Scholar
  17. 17.
    Williams G, Trask R, Bond I (2007) A self-healing carbon fibre reinforced polymer for aerospace applications. Compos A Appl Sci Manuf 38:1525–1532CrossRefGoogle Scholar
  18. 18.
    Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally remendable cross-linked polymeric material. Science 295:1698–1702CrossRefGoogle Scholar
  19. 19.
    Chen X, Wudl F, Mal AK, Shen H, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36:1802–1807CrossRefGoogle Scholar
  20. 20.
    Chujo Y, Sada K, Naka A, Nomura R, Saegusa T (1993) Synthesis and redox gelation of disulfide-modified polyoxazoline. Macromolecules 26:883–887CrossRefGoogle Scholar
  21. 21.
    Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions. J Am Chem Soc 132:12051–12058CrossRefGoogle Scholar
  22. 22.
    Lange RFM, Meijer EW (1996) Supramolecular polymer interactions using melamine. Macromol Symp 102:301–308CrossRefGoogle Scholar
  23. 23.
    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Supramolecular polymers. Chem Rev 101:4071–4098CrossRefGoogle Scholar
  24. 24.
    Eisenberg A, Kim J-S (1998) Introduction to ionomers. Wiley, New YorkGoogle Scholar
  25. 25.
    Eisenberg A (2012) Ion-containing polymers: physical properties and structure, vol 2. ElsevierGoogle Scholar
  26. 26.
    Plaisted TA, Amirkhizi AV, Arbelaez D, Nemat-Nasser SC (2003) Self-healing structural composites with electromagnetic functionality. In: Proc. SPIE 5054, Smart structures and materials 2003: Industrial and commercial applications of smart structures technologies, 372 (August 12, 2003); doi: 10.1117/12.483894
  27. 27.
    Williams KA, Boydston AJ, Bielawski CW (2007) Towards electrically conductive, self-healing materials. J R Soc Interface 4:359–362CrossRefGoogle Scholar
  28. 28.
    Luo X, Mather PT (2013) Shape memory assisted self-healing coating. ACS Macro Lett 2:152–156CrossRefGoogle Scholar
  29. 29.
    Kirkby EL, Michaud VJ, Månson J-A, Sottos NR, White SR (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer (Guildf) 50:5533–5538CrossRefGoogle Scholar
  30. 30.
    Neuser S, Michaud V, White SR (2012) Improving solvent-based self-healing materials through shape memory alloys. Polymer (Guildf) 53:370–378CrossRefGoogle Scholar
  31. 31.
    Yari H, Mohseni M, Ramezanzadeh B (2009) Comparisons of weathering performance of two automotive refinish coatings: a case study. J Appl Polym Sci 111:2946–2956CrossRefGoogle Scholar
  32. 32.
    Ramezanzadeh B, Mohseni M, Yari H, Sabbaghian S (2009) An evaluation of an automotive clear coat performance exposed to bird droppings under different testing approaches. Prog Org Coat 66:149–160CrossRefGoogle Scholar
  33. 33.
    Keller MW, White SR, Sottos NR (2007) A self-healing poly(dimethyl siloxane) elastomer. Adv Funct Mater 17:2399–2404CrossRefGoogle Scholar
  34. 34.
    Cho SH, Andersson HM, White SR, Sottos NR, Braun PV (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997–1000CrossRefGoogle Scholar
  35. 35.
    Beiermann BAA, Keller MWW, Sottos NRR (2009) Self-healing flexible laminates for resealing of puncture damage. Smart Mater Struct 18:85001CrossRefGoogle Scholar
  36. 36.
    Wang W, Xu L, Li X, Lin Z, Yang Y, An E (2014) Self-healing mechanisms of water triggered smart coating in seawater. J Mater Chem A 2:1914–1921CrossRefGoogle Scholar
  37. 37.
    Yang J, Keller MW, Moore JS, White SR, Sottos NR (2008) Microencapsulation of isocyanates for self-healing polymers. Macromolecules 41:9650–9655CrossRefGoogle Scholar
  38. 38.
    Kim H, Park S (2007) Preparation and properties of microcapsule with EVA core-PU shell structure. J Appl Polym Sci 103:893–902CrossRefGoogle Scholar
  39. 39.
    Caruso MM, Blaiszik BJ, Jin H, Schelkopf SR, Stradley DS, Sottos NR, White SR, Moore JS (2010) Robust, double-walled microcapsules for self-healing polymeric materials. ACS Appl Mater Interfaces 2:1195–1199CrossRefGoogle Scholar
  40. 40.
    Bai N, Simon GP, Saito K (2013) Investigation of the thermal self-healing mechanism in a cross-linked epoxy system. RSC Adv 3:20699CrossRefGoogle Scholar
  41. 41.
    Bai N, Saito K, Simon GP (2013) Synthesis of a diamine cross-linker containing Diels–Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym Chem 4:724–730CrossRefGoogle Scholar
  42. 42.
    Kashif M, Chang Y-W (2015) Supramolecular thermoplastic elastomer with thermally scratch repairable effect from 3-amino-1,2,4-triazole crosslinked maleated polyethylene-octene elastomer/nylon 12 blends. J Appl Polym Sci 132Google Scholar
  43. 43.
    Bosman AW, Sijbesma RP, Meijer EW (2004) Supramolecular polymers at work. Mater Today 7:34–39CrossRefGoogle Scholar
  44. 44.
    Yari H, Mohseni M, Messori M, Ranjbar Z (2014) Tribological properties and scratch healing of a typical automotive nano clearcoat modified by a polyhedral oligomeric silsesquioxane compound. Eur Polym J 60:79–91CrossRefGoogle Scholar
  45. 45.
    Dimopoulos A, Wietor J-L, Wübbenhorst M, Napolitano S, van Benthem RATM, de With G, Sijbesma RP (2010) Enhanced mechanical relaxation below the glass transition temperature in partially supramolecular networks. Macromolecules 43:8664–8669CrossRefGoogle Scholar
  46. 46.
    Neal J, Mozhdehi D, Guan Z (2015) Enhancing mechanical performance of a covalent self-healing material by sacrificial non-covalent bonds. J Am Chem Soc 137(14):4846–4850CrossRefGoogle Scholar
  47. 47.
    Hart LR, Hunter JH, Nguyen NA, Harries JL, Greenland BW, Mackay ME, Colquhoun HM, Hayes W (2014) Multivalency in healable supramolecular polymers: the effect of supramolecular cross-link density on the mechanical properties and healing of non-covalent polymer networks. Polym Chem 5:3680–3688CrossRefGoogle Scholar
  48. 48.
    Wei Q, Schlaich C, Prévost S, Schulz A, Böttcher C, Gradzielski M, Qi Z, Haag R, Schalley CA (2014) Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces. Adv Mater 26:7358–7364CrossRefGoogle Scholar
  49. 49.
    Lii C-Y, Liaw SC, Lai VM-F, Tomasik P (2002) Xanthan gum–gelatin complexes. Eur Polym J 38:1377–1381CrossRefGoogle Scholar
  50. 50.
    Shulkin A, Stover HD (2002) Polymer microcapsules by interfacial polyaddition between styrene–maleic anhydride copolymers and amines. J Membr Sci 209:421–432CrossRefGoogle Scholar
  51. 51.
    Brown EN, Kessler MR, Sottos NR, White SR (2003) In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20:719–730CrossRefGoogle Scholar
  52. 52.
    Alexandridou CKFMAFS, Kiparissides C, Mange F, Foissy A (2008) Surface characterization of oil-containing polyterephthalamide microcapsules prepared by Interfacial polymerization. J Microencapsul 18(6):767–781CrossRefGoogle Scholar
  53. 53.
    Toubeli A, Kiparissides C (1998) Synthesis and characterization of polyterephthalamide membranes for encapsulation use: effect of the amine type and composition on the membrane permeability. J Membr Sci 146:15–29CrossRefGoogle Scholar
  54. 54.
    Frere W, Danicher L, Gramain P (1998) Preparation of polyurethane microcapsules by interfacial polycondensation. Eur Polym J 34:193–199CrossRefGoogle Scholar
  55. 55.
    Hong K, Park S (1999) Preparation of polyurethane microcapsules with different soft segments and their characteristics. React Funct Polym 42:193–200CrossRefGoogle Scholar
  56. 56.
    Kim IH, Seo JB, Kim YJ (2002) Preparation and characterization of polyurethane microcapsules containing functional oil. Polymer (Korea) 26:400–409Google Scholar
  57. 57.
    Kwon J-Y, Kim H-D (2006) Preparation and application of polyurethane-urea microcapsules containing phase change materials. Fibers Polym 7:12–19CrossRefGoogle Scholar
  58. 58.
    Hong K, Park S (2000) Characterization of ovalbumin-containing polyurethane microcapsules with different structures. Polym Test 19:975–984CrossRefGoogle Scholar
  59. 59.
    Crespy D, Stark M, Hoffmann-Richter C, Ziener U, Landfester K (2007) Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromolecules 40:3122–3135CrossRefGoogle Scholar
  60. 60.
    Hernandez-Barajas J, Hunkeler D (1997) Heterophase water-in-oil polymerization of acrylamide by a hybrid inverse-emulsion/inverse-microemulsion process. Polymer (Guildf) 38:5623–5641CrossRefGoogle Scholar
  61. 61.
    Müller K, Klapper M, Müllen K (2007) Preparation of high molecular weight polyurethane particles by nonaqueous emulsion polyaddition. Colloid Polym Sci 285:1157–1161CrossRefGoogle Scholar
  62. 62.
    Klapper M, Nenov S, Haschick R, Müller K, Müllen K (2008) Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles. Acc Chem Res 41:1190–1201CrossRefGoogle Scholar
  63. 63.
    Kobaslija M, McQuade DT (2006) Polyurea microcapsules from oil-in-oil emulsions via interfacial polymerization. Macromolecules 39:6371–6375CrossRefGoogle Scholar
  64. 64.
    Shukla PG, Kalidhass B, Shah A, Palaskar DV (2002) Preparation and characterization of microcapsules of water-soluble pesticide monocrotophos using polyurethane as carrier material. J Microencapsul 19(3):293–304CrossRefGoogle Scholar
  65. 65.
    Hatami Boura S, Peikari M, Ashrafi A, Samadzadeh M (2012) Self-healing ability and adhesion strength of capsule embedded coatings—micro and nano sized capsules containing linseed oil. Prog Org Coat 75:292–300CrossRefGoogle Scholar
  66. 66.
    Kouhi M, Mohebbi A, Mirzaei M, Peikari M (2013) Optimization of smart self-healing coatings based on micro/nanocapsules in heavy metals emission inhibition. Prog Org Coat 76:1006–1015CrossRefGoogle Scholar
  67. 67.
    Wang R, Li H, Hu H, He X, Liu W (2009) Preparation and characterization of self-healing microcapsules with poly(urea-formaldehyde) grafted epoxy functional group shell. J Appl Polym Sci 113:1501–1506CrossRefGoogle Scholar
  68. 68.
    Latnikova A (2012) Polymeric capsules for self-healing anticorrosion coatings. Universität Potsdam, den 10Google Scholar
  69. 69.
    Nesterova T, Dam-Johansen K, Pedersen LT, Kiil S (2012) Microcapsule-based self-healing anticorrosive coatings: capsule size, coating formulation, and exposure testing. Prog Org Coat 75:309–318CrossRefGoogle Scholar
  70. 70.
    Suryanarayana C, Rao KC, Kumar D (2008) Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog Org Coat 63:72–78CrossRefGoogle Scholar
  71. 71.
    Jadhav RS, Mane V, Bagle AV, Hundiwale DG, Mahulikar PP, Waghoo G (2013) Synthesis of multicore phenol formaldehyde microcapsules and their application in polyurethane paint formulation for self-healing anticorrosive coating. Int J Ind Chem 4:31CrossRefGoogle Scholar
  72. 72.
    Jadhav RS, Hundiwale DG, Mahulikar PP (2011) Synthesis and characterization of phenol-formaldehyde microcapsules containing linseed oil and its use in epoxy for self-healing and anticorrosive coating. J Appl Polym Sci 119:2911–2916CrossRefGoogle Scholar
  73. 73.
    Mirabedini SM, Dutil I, Farnood RR (2012) Preparation and characterization of ethyl cellulose-based core–shell microcapsules containing plant oils. Colloids Surfaces A Physicochem Eng Asp 394:74–84CrossRefGoogle Scholar
  74. 74.
    Nesterova T, Dam-Johansen K, Kiil S (2011) Synthesis of durable microcapsules for self-healing anticorrosive coatings: a comparison of selected methods. Prog Org Coat 70:342–352CrossRefGoogle Scholar
  75. 75.
    Koh E, Lee S, Shin J, Kim Y-W (2013) Renewable polyurethane microcapsules with isosorbide derivatives for self-healing anticorrosion coatings. Ind Eng Chem Res 52:15541–15548CrossRefGoogle Scholar
  76. 76.
    Kopec M, Szczepanowicz K, Mordarski G, Podgorna K, Socha RP, Nowak P, Warszyński P, Hack T (2015) Self-healing epoxy coatings loaded with inhibitor-containing polyelectrolyte nanocapsules. Prog Org Coat 84:97–106CrossRefGoogle Scholar
  77. 77.
    Raps D, Hack T, Kolb M, Zheludkevich ML, Nuyken O (2010) Development of corrosion protection coatings for AA2024-T3 using micro-encapsulated inhibitors. ACS Symp Ser 1050:165–189CrossRefGoogle Scholar
  78. 78.
    Shchukin DG, Zheludkevich M, Yasakau K, Lamaka S, Ferreira MGS, Moehwald H (2006) Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv Mater 18:1672–1678CrossRefGoogle Scholar
  79. 79.
    Sonawane SH, Bhanvase BA, Jamali AA, Dubey SK, Kale SS, Pinjari DV et al (2012) Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazole. Chem Eng J 189:464–472CrossRefGoogle Scholar
  80. 80.
    Bhanvase BA, Patel MA, Sonawane SH (2014) Corros Sci 88:170–177CrossRefGoogle Scholar
  81. 81.
    Shchukin DG (2013) Kinetic properties of layer-by-layer assembled cerium zinc molybdate nanocontainers during corrosion inhibition. Polym Chem 4:4871–4877CrossRefGoogle Scholar
  82. 82.
    Ma J, Cui B, Dai J, Li D (2011) Mechanism of adsorption of anionic dye from aqueous solutions onto organobentonite. J Hazard Mater 186:1758–1765CrossRefGoogle Scholar
  83. 83.
    Shi X, Nguyen TA, Suo Z, Liu Y, Avci R (2009) Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf Coat Technol 204:237–245CrossRefGoogle Scholar
  84. 84.
    Williams G, McMurray HN, Loveridge MJ (2010) Inhibition of corrosion-driven organic coating disbondment on galvanised steel by smart release group II and Zn(II)-exchanged bentonite pigments. Electrochim Acta 55:1740–1748CrossRefGoogle Scholar
  85. 85.
    Motte C, Poelman M, Roobroeck A, Fedel M, Deflorian F, Olivier MG (2012) Improvement of corrosion protection offered to galvanized steel by incorporation of lanthanide modified nanoclays in silane layer. Prog Org Coat 74:326–333CrossRefGoogle Scholar
  86. 86.
    Hang TTX, Truc TA, Olivier MG, Vandermiers C, Guérit N, Pébre N (2010) Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay. Prog Org Coat 69:410–416CrossRefGoogle Scholar
  87. 87.
    Ahmed NM, Emira HS, Selim MM (2011) Anticorrosive performance of ion-exchange zeolites in alkyd-based paints. Pigment Resin Technol 40:91–99CrossRefGoogle Scholar
  88. 88.
    Ghazi A, Ghasemi E, Mahdavian M, Ramezanzadeh B, Rostami M (2015) The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating. Corros Sci 94:207–217CrossRefGoogle Scholar
  89. 89.
    Weller M, Overton T, Rourke J, Armstrong F (2014) Inorganic chemistry, 6th edn. Oxford University Press, OxfordGoogle Scholar
  90. 90.
    Deka RC, Tajima N, Hirao K (2001) Influence of isomorphous substitution on acidity of zeolites: ab initio and density functional studies. J Mol Struct 535:31–38CrossRefGoogle Scholar
  91. 91.
    Williams G, Geary S, McMurray HN (2012) Smart release corrosion inhibitor pigments based on organic ion-exchange resins. Corros Sci 57:139–147CrossRefGoogle Scholar
  92. 92.
    Roselli S, Bellotti N, Deyá C, Revuelta M, del Amo B, Romagnoli R (2014) Lanthanum-exchanged zeolite and clay as anticorrosive pigments for galvanized stee. J Rare Earths 32:352–359CrossRefGoogle Scholar
  93. 93.
    Ferrer EL, Rollon AP, Mendoza HD, Lafont U, Garcia SJ (2014) Double-doped zeolites for corrosion protection of aluminium alloys. Microporous Mesoporous Mater 188:8–15CrossRefGoogle Scholar
  94. 94.
    Cho MS, Shin B, Choi SD, Lee Y, Song KG (2004) Gel polymer electrolyte nanocomposites PEGDA with Mg-Al layered double hydroxides. Electrochim Acta 50:331–334CrossRefGoogle Scholar
  95. 95.
    Zheludkevich MLL, Poznyak SKK, Rodrigues LMM, Raps D, Hack T, Dick LFF, Nunes T, Ferreira MGSGS (2010) Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros Sci 52:602–611CrossRefGoogle Scholar
  96. 96.
    Poznyak SK, Tedim J, Rodrigues LM, Salak AN, Zheludkevich ML, Dick LFP, Ferreira MGS (2009) Novel inorganic host layered double hydroxides intercalated with guest organic inhibitors for anticorrosion applications. ACS Appl Mater Interfaces 1:2353–2362CrossRefGoogle Scholar
  97. 97.
    Li D, Wang F, Yu X, Wang J, Liu Q, Yang P, He Y, Wang Y, Zhang M (2011) Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate. Prog Org Coat 71:302–309CrossRefGoogle Scholar
  98. 98.
    Hang TTX, Truc TA, Duong NT, Vu PG, Hoang T (2012) Preparation and characterization of nanocontainers of corrosion inhibitor based on layered double hydroxides. Appl Clay Sci 67–68:18–25CrossRefGoogle Scholar
  99. 99.
    Hang TTX, Truc TA, Duong NT, Pébre N, Olivier MG (2012) Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel. Prog Org Coat 74:343–348CrossRefGoogle Scholar
  100. 100.
    Armstrong JA, Dann SE (2000) Investigation of zeolite scales formed in the Bayer process. Microporous Mesoporous Mater 41:89–97CrossRefGoogle Scholar
  101. 101.
    Dong Y, Lisco B, Wu H, Koo JH, Krifa M (2015) Flame retardancy and mechanical properties of ferrum ammonium phosphate–halloysite/epoxy polymer nanocomposites. J Appl Polym Sci 132(13). doi: 10.1002/APP.41681
  102. 102.
    Zhao Y, Abdullayev E, Vasiliev A, Lvov Y (2013) Halloysite nanotubule clay for efficient water purification. J Colloid Interface Sci 406:121–129CrossRefGoogle Scholar
  103. 103.
    Lvov YM, Shchukin DG, Mo H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820CrossRefGoogle Scholar
  104. 104.
    Andreeva DV, Shchukin DG (2008) Smart self-repairing protective coatings. Mater Today 11:24–30CrossRefGoogle Scholar
  105. 105.
    Shchukin DG, Möhwald H (2007) Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Adv Funct Mater 17:1451–1458CrossRefGoogle Scholar
  106. 106.
    Abdullayev E, Abbasov V, Tursunbayeva A, Portnov V, Ibrahimov H, Mukhtarova G, Lvov Y (2013) Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys. Appl Mater Interfaces 5:4464–4471Google Scholar
  107. 107.
    Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Ferreira MGS, Möhwald H (2008) Active anticorrosion coatings with halloysite nanocontainers. J Phys Chem C 112:958–964CrossRefGoogle Scholar
  108. 108.
    Zheludkevich ML, Serra R, Montemor MF, Ferreira MGS (2005) Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors. Electrochem Commun 7:836–840CrossRefGoogle Scholar
  109. 109.
    Tavandashti NP, Sanjabi S (2010) Corrosion study of hybrid sol-gel coatings containing boehmite nanoparticles loaded with cerium nitrate corrosion inhibitor. Prog Org Coat 69:384–391CrossRefGoogle Scholar
  110. 110.
    Skorb EV, Fix D, Andreeva DV, Möhwald H, Shchukin DG (2009) Surface-modified mesoporous SiO2 containers for corrosion protection. Adv Funct Mater 19:2373–2379CrossRefGoogle Scholar
  111. 111.
    Saremi M, Yeganeh M (2014) Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings. Corros Sci 86:159–170CrossRefGoogle Scholar
  112. 112.
    Montemor MFF, Snihirova DVV, Taryba MGG, Lamaka SVV, Kartsonakis IAA, Balaskas ACC, Kordas GCC, Tedim J, Kuznetsova A, Zheludkevich MLL, Ferreira MGSGS (2012) Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochim Acta 60:31–40CrossRefGoogle Scholar
  113. 113.
    Li GL, Zheng Z, Möhwald H, Shchukin DG (2013) Silica/polymer double-walled hybrid nanotubes: synthesis and application as stimuli-responsive nanocontainers in self-healing coatings. ACS Nano 7:2470–2478CrossRefGoogle Scholar
  114. 114.
    Snavely J, Earl S (1988) Method for scale and corrosion inhibition in a well penetrating a subterranean formation. US Patent 4779679Google Scholar
  115. 115.
    Khramov AN, Voevodin NN, Balbyshev VN, Donley MS (2004) Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors. Thin Solid Films 447–448:549–557CrossRefGoogle Scholar
  116. 116.
    Khramov AN, Voevodin NN, Balbyshev VN, Mantz RA (2005) Sol-gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors. Thin Solid Films 483:191–196CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pooneh Kardar
    • 1
  • Hossein Yari
    • 1
  • Mohammad Mahdavian
    • 1
  • Bahram Ramezanzadeh
    • 1
    Email author
  1. 1.Department of Surface Coatings and CorrosionInstitute for Color Science and TechnologyTehranIran

Personalised recommendations