Self-Healing Coatings for Corrosion Protection of Steel

  • Liana Maria MuresanEmail author


Self-healing coatings belong to a new generation of smart coatings for corrosion control, which have both passive characteristics (from matrix material) and active behavior towards the local environment (through incorporated or surface-mounted compounds acting as inhibitors). The coatings provide a rapid release of a repairing material (e.g., a corrosion inhibitor) after changes in coating integrity by mechanical/chemical damage of the coating or by local pH changes occurring near the metallic surface. Within all classes of materials, the one with the largest self-repair potential belongs to polymers since they display more useful properties than any other material. However, besides these materials, inorganic (including mainly silica, titania, zirconia, etc.), organic, or hybrid layers have been successfully used as matrices for self-repairing coatings. On the other hand, the self-healing agents embedded in the matrices belong to different classes varying from natural compounds (tung oil, spar varnish, camphor, linseed oil, etc.) to synthetic ones (isodecyl diphenyl phosphate, 2-mercaptobenzothiazole, alkyl ammonium salts, etc.). In this context, recent advances in preparation and characterization of different self-healing coatings on steel will be reviewed. The main techniques for obtaining self-healing coatings and the challenges for future research will be also briefly discussed.


Corrosion Self-healing Protective coatings Steel Corrosion inhibitors 


  1. 1.
    Fischer H (2010) Nat Sci 2(8):873Google Scholar
  2. 2.
    Taryba M, Lamaka SV, Snihirova D, Ferreira MGS, Montemor MF, Wijting WK, Toews S, Grundmeier G (2011) Electrochim Acta 56:4475CrossRefGoogle Scholar
  3. 3.
    Shchukin DG, Möhwald H (2007) Small 6:926CrossRefGoogle Scholar
  4. 4.
    Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Adv Mater 22:5424CrossRefGoogle Scholar
  5. 5.
    Thébault F, Vuillemin B, Oltra R, Ogle K, Allely C (2008) Electrochim Acta 53:5226CrossRefGoogle Scholar
  6. 6.
    Dalbin S, Maurin G, Nogueira RP, Persello J, Pommier N (2005) Surf Coat Technol 194:363CrossRefGoogle Scholar
  7. 7.
    Aramaki K (2003) Corros Sci 45:451CrossRefGoogle Scholar
  8. 8.
    Albert E, Cotolan N, Nagy N, Sáfrán G, Szabó G, Muresan LM, Hórvölgyi Z (2015) Microporous Mesoporous Mater 206:102CrossRefGoogle Scholar
  9. 9.
    Yuan M-R, Lu J-T, Kong G, Che C-S (2011) Surf Coat Technol 205:4507CrossRefGoogle Scholar
  10. 10.
    Jud K, Kausch HH (1979) Polym Bull 1:697CrossRefGoogle Scholar
  11. 11.
    Kalista SJ Jr, Ward TC, Oyetunji Z (2007) Mech Adv Mater Struct 14:391CrossRefGoogle Scholar
  12. 12.
    Keller MW, Hampton K, McLaury B (2013) Wear 307:218CrossRefGoogle Scholar
  13. 13.
    Sababi M, Pan J, Augustsson P-E, Sundell P-E, Claesson PM (2014) Corros Sci 84:189CrossRefGoogle Scholar
  14. 14.
    Wu DY, Meure S, Solomon D (2008) Prog Polym Sci 33:479CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Sauvant-Moynot V, Gonzales S, Kittel J (2008) Prog Org Coat 63:307CrossRefGoogle Scholar
  17. 17.
    Kartsonakis IA, Balaskas AC, Koumoulos EP, Charitidis CA, Kordas GC (2012) Corros Sci 57:30CrossRefGoogle Scholar
  18. 18.
    Trabelsi W, Cecilio P, Ferreira MGS, Montemor MF (2005) Prog Org Coat 54:276CrossRefGoogle Scholar
  19. 19.
    Pepe A, Aparicio M, Duran A, Cere S (2006) J Sol-Gel Sci Technol 39:131CrossRefGoogle Scholar
  20. 20.
    Chenan A, Ramya S, Gorge RP, Kamachi Mudali U (2014) Corrosion 70(5):496CrossRefGoogle Scholar
  21. 21.
    Garcia SJ, Fisher HR, van der Zwaag S (2011) Prog Org Coat 72:211CrossRefGoogle Scholar
  22. 22.
    Zvonkina IJ, Hilt M (2014) Strategies for developing multi-functional, self-healing coatings for corrosion prevention and other functions. In: Abdel Salam Hamdy Makhlouf (ed) Handbook of smart coatings for materials protection. Woodhead publishing series in metals and surface engineering, no 64, p 105Google Scholar
  23. 23.
    Garcia SJ, Fischer HR (2014) Self-healing polymer systems: properties, synthesis and applications. In: Aguilar De Armas MR, Román JS (eds) Smart polymers and their applications. Woodhead Publishing Ltd, p 271Google Scholar
  24. 24.
    Wang D, Bierwagen GP (2009) Prog Org Coat 64:327CrossRefGoogle Scholar
  25. 25.
    Bohm S, McMurray HN, Powell SM, Worsley DA (2001) Mater Corros 52:896CrossRefGoogle Scholar
  26. 26.
    Hang TTX, Truc TA, Duong NT, Pebère N, Olivier M-G (2012) Prog Org Coat 74:343CrossRefGoogle Scholar
  27. 27.
    Williams G, Geary S, McMurray HN (2012) Corros Sci 57:139CrossRefGoogle Scholar
  28. 28.
    Nemes PI, Zaharescu M, Muresan LM (2013) J Solid State Electrochem 17(2):511CrossRefGoogle Scholar
  29. 29.
    Blejan D, Muresan LM (2013) Mater Corros 64(5):433CrossRefGoogle Scholar
  30. 30.
    Montemor MF, Pinto R, Ferreira MGS (2009) Electrochim Acta 54:5179CrossRefGoogle Scholar
  31. 31.
    Montemor MF, Cabral AM, Zheludkevich ML, Ferreira MGS (2006) Surf Coat Technol 200:2875CrossRefGoogle Scholar
  32. 32.
    Selvakumar N, Jeyasubramanian K, Sharmila R (2012) Prog Org Coat 74:461CrossRefGoogle Scholar
  33. 33.
    Zhang W, Liao LP, Zhao Y (2014) Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge, p 287CrossRefGoogle Scholar
  34. 34.
    Choi H, Song YK, Kim KY, Park JM (2012) Surf Coat Technol 206:2354CrossRefGoogle Scholar
  35. 35.
    Kouhi M, Mohebbi A, Mirzaei M, Peikari M (2013) Prog Org Coat 76:1006CrossRefGoogle Scholar
  36. 36.
    Behzadnasaba M, Esfandeha M, Mirabedinia SM, Zohuriaan-Mehra MJ, Farnood RR (2014) Colloids and Surf A Physicochem Eng Aspects 457:16CrossRefGoogle Scholar
  37. 37.
    Kumar A, Stephenson LD, Muray JN (2006) Prog Org Coat 55:244CrossRefGoogle Scholar
  38. 38.
    Blaiszik BJ, Sottos NR, White SR (2008) Compos Sci Technol 68:978CrossRefGoogle Scholar
  39. 39.
    Falcon JM, Batista FF, Aoki IV (2014) Electrochim Acta 124:109CrossRefGoogle Scholar
  40. 40.
    Toncelli C, De Reus D, Broekhuis AA, Picchioni F (2012) In: Amendola V, Meneghetti M (eds) Self-healing at the nanoscale: mechanisms and key concepts of natural and artificial systems. CRC Press/Taylor & Francis Group, Boca Raton, FL, p 208Google Scholar
  41. 41.
    Lii CY, Liaw SC, Lai VMF, Tomasik P (2002) Eur Polym J 38:1377CrossRefGoogle Scholar
  42. 42.
    Cao Z, Dong L, Li L, Shang Y, Qi D, Lv Q, Shan G, Ziener U, Landfester K (2012) Langmuir 28(17):7023CrossRefGoogle Scholar
  43. 43.
    Calle LM, Li W (2014) Microencapsulated indicators and inhibitors for corrosion detection and control. In: Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge, p 370Google Scholar
  44. 44.
    Kopeć M, Szczepanowicz K, Mordarski G, Podgórna K, Socha RP, Nowak P, Warszyński P, Hack T (2015) Prog Org Coat 84:97CrossRefGoogle Scholar
  45. 45.
    Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Nat Mater 6:581. (Last Accessed: May 2015)
  46. 46.
    Andreeva DV, Skorb EV (2014) Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge, p 307CrossRefGoogle Scholar
  47. 47.
    Yuan MR, Lu JT, Kong G (2010) Effect of SiO2. Surf Coat Technol 204:1229CrossRefGoogle Scholar
  48. 48.
    Hosseini SMA, Jafari AH, Jamalizadeh E (2009) Electrochim Acta 54:7207CrossRefGoogle Scholar
  49. 49.
    Jeeva Jothi K, Palanivelu K (2013) Ceram Int 39:7619CrossRefGoogle Scholar
  50. 50.
    Yang Z, Wei Z, Le-ping L, Si-jie W, Wu-jun L (2012) Appl Surf Sci 258:1915CrossRefGoogle Scholar
  51. 51.
    Mehta NK, Bogere MN (2009) Prog Org Coat 64:419CrossRefGoogle Scholar
  52. 52.
    Cabral AM, Trabelsi W, Serra R, Montemor MF, Zheludkevic ML, Ferreira MGS (2006) Corros Sci 48:3740CrossRefGoogle Scholar
  53. 53.
    Samadzadeh M, Hatami Boura S, Pekari M, Ashrafi A, Kasiriha M (2011) Prog Org Coat 70:383CrossRefGoogle Scholar
  54. 54.
    Suryanarayana C, Chowdoji Rao K, Kumar D (2008) Prog Org Coat 63:72CrossRefGoogle Scholar
  55. 55.
    Andreeva DV, Schukin DG (2008) Mater Today 11(10):24CrossRefGoogle Scholar
  56. 56.
    Andreeva DV, Skorb EV, Schukin DG (2010) Appl Mater Interfaces 2:1954CrossRefGoogle Scholar
  57. 57.
    Farhat TR, Schlenoff JB (2002) Electrochem Solid-State Lett 5(4):B13CrossRefGoogle Scholar
  58. 58.
    Falcón JM, Batista FF, Aoki IV (2014) Electrochim Acta 124:109CrossRefGoogle Scholar
  59. 59.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Harcourt Brace Jovanovich/Academic Press, Boston, MA, p 2Google Scholar
  60. 60.
    Barry Carter C, Grant Norton M (2007) Ceramic materials, science and engineering. Springer, New York, NY, p 400Google Scholar
  61. 61.
    Montemor MF, Trabelsi W, Lamaka SV, Yasakauc KA, Zheludkevich ML, Bastos AC, Ferreira MGS (2008) Electrochim Acta 53:5913CrossRefGoogle Scholar
  62. 62.
    De Lima Neto P, Atik M, Avaca LA, Aegerter MA (1994) J Sol-Gel Sci Technol 2:529CrossRefGoogle Scholar
  63. 63.
    Norzita N, Haziq M, Zurina M (2012) Int J Chem Environ Eng 3(4):267Google Scholar
  64. 64.
    Aramaki K, Shimura T (2003) Corros Sci 45(11):2639CrossRefGoogle Scholar
  65. 65.
    Hamlaoui Y, Tifouti L, Remazeilles C, Pedraza F (2010) Mater Chem Phys 120:172CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations