Advertisement

Smart Textile Supercapacitors Coated with Conducting Polymers for Energy Storage Applications

  • Nedal Y. Abu-Thabit
  • Abdel Salam Hamdy MakhloufEmail author
Chapter

Abstract

Over the last few years, the development of nanotechnology has resulted in generation of new materials and innovation for a wide range of applications and products. Among these applications, textile industry is expected to hold a considerable potential for the development of advanced nano-based materials. For example, nanotechnology enabled the production of novel smart “multifunctional” textiles with combined properties in one fabric. Conductive textiles represent a key class of smart textiles with promising future’s applications in areas such as electronic textiles, display devices, health monitoring devices, thermal and moisture management, flexible energy storage, and power generation devices. Recently, a remarkable attention has been devoted to the development of textile supercapacitor for energy storage and wearable electronics applications. Supercapacitor textiles offer advantages such as lightweight, flexibility, stretchability, and ease of integration with electronic textiles. Different approaches have been investigated for fabrication of smart conductive textiles for supercapacitor applications. Among these approaches, textiles coated with electrically conducting polymers (ECPs) are one of the most promising and facile approaches for fabrication of textile supercapacitors. ECP-coated textiles are characterized with high specific capacitance through fast redox reaction ease of integration into planar, flexible, and stretchable textile substrates with various shapes and large areas, thin film fabrication with controlled nanostructured morphology, and applicability for fabrication of composite and asymmetric textile supercapacitors. This chapter highlights the recent advances and developments in the fabrication of ECP-based textile supercapacitors, including different types of pure ECPs and their composites with other conducting materials for preparation of hybrid supercapacitors with superior performance for textile supercapacitor applications.

Keywords

Supercapacitor textiles Supercapacitor fibers Smart textile Conducting polymers Conductive textiles 

References

  1. 1.
    Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14(7):11957–11992CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Jinlian H et al (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21(5):053001CrossRefGoogle Scholar
  4. 4.
    Stuart MAC et al (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113CrossRefGoogle Scholar
  5. 5.
    Li Z et al (2014) Ag nanoparticle–ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach. Nanotechnology 25(14):145702CrossRefGoogle Scholar
  6. 6.
    Kowal K et al (2014) Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections. RSC Adv 4(38):19945–19952CrossRefGoogle Scholar
  7. 7.
    Li Y-C et al (2010) Flame retardant behavior of polyelectrolyte−clay thin film assemblies on cotton fabric. ACS Nano 4(6):3325–3337CrossRefGoogle Scholar
  8. 8.
    Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96(3):377–392CrossRefGoogle Scholar
  9. 9.
    Cain AA et al (2014) Intumescent nanocoating extinguishes flame on fabric using aqueous polyelectrolyte complex deposited in single step. Macromol Mater Eng 299(10):1180–1187CrossRefGoogle Scholar
  10. 10.
    Carosio F et al (2014) Flame retardancy of polyester and polyester–cotton blends treated with caseins. Indus Eng Chem Res 53(10):3917–3923CrossRefGoogle Scholar
  11. 11.
    Hu J (2007) Chapter 10 – Shape memory textiles. In: Hu J (ed) Shape memory polymers and textiles. Woodhead Publishing, Cambridge, pp 305–337CrossRefGoogle Scholar
  12. 12.
    Mattila H (2015) Chapter 15 – Yarn to fabric: intelligent textiles. In: Sinclair R (ed) Textiles and fashion. Woodhead Publishing, Cambridge, pp 355–376Google Scholar
  13. 13.
    Hu J (2013) Chapter 10 – Shape memory finishing treatments for smart textiles. In: Hu J (ed) Advances in shape memory polymers. Woodhead Publishing, Cambridge, pp 259–280CrossRefGoogle Scholar
  14. 14.
    Gugliuzza A, Drioli E (2013) A review on membrane engineering for innovation in wearable fabrics and protective textiles. J Membr Sci 446:350–375CrossRefGoogle Scholar
  15. 15.
    Hsu P-C et al (2015) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365–371CrossRefGoogle Scholar
  16. 16.
    Wang X et al (2014) Smart hydrogel-functionalized textile system with moisture management property for skin application. Smart Mater Struct 23(12):125027CrossRefGoogle Scholar
  17. 17.
    Yu D et al (2014) Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol-ene click reactions. ACS Appl Mater Interfaces 6(2):1236–1242CrossRefGoogle Scholar
  18. 18.
    Wang X et al (2015) Effect of surface modifications on the thermal and moisture behavior of wool fabric. Appl Surf Sci 342:101–105CrossRefGoogle Scholar
  19. 19.
    Qi K et al (2006) Self-cleaning cotton. J Mater Chem 16(47):4567–4574CrossRefGoogle Scholar
  20. 20.
    Qi K et al (2007) Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles. J Mater Chem 17(33):3504–3508CrossRefGoogle Scholar
  21. 21.
    Bedford N, Steckl A (2010) Photocatalytic self cleaning textile fibers by coaxial electrospinning. ACS Appl Mater Interfaces 2(8):2448–2455CrossRefGoogle Scholar
  22. 22.
    Afzal S, Daoud WA, Langford SJ (2014) Superhydrophobic and photocatalytic self-cleaning cotton. J Mater Chem A 2(42):18005–18011CrossRefGoogle Scholar
  23. 23.
    Lina MC, Alison BF (2014) Smart fabric sensors and e-textile technologies: a review. Smart Mater Struct 23(5):053001CrossRefGoogle Scholar
  24. 24.
    Hang Q, Oleg S, Maksim S (2015) Flexible fiber batteries for applications in smart textiles. Smart Mater Struct 24(2):025012CrossRefGoogle Scholar
  25. 25.
    Saeed SE-S et al (2014) Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials. Carbohydr Polym 99:817–824CrossRefGoogle Scholar
  26. 26.
    Zhang P et al (2015) Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters. Biomaterials 36:26–32CrossRefGoogle Scholar
  27. 27.
    Yang H, Lightner CR, Dong L (2011) Light-emitting coaxial nanofibers. ACS Nano 6(1):622–628CrossRefGoogle Scholar
  28. 28.
    Lv Z et al (2012) Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4(4):1248–1253CrossRefGoogle Scholar
  29. 29.
    Yun MJ et al (2014) Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth. Sci Rep 4:5322Google Scholar
  30. 30.
    Liu Z et al (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44(1):161–192CrossRefGoogle Scholar
  31. 31.
    Singh MK (2011) Flexible photovoltaic textiles for smart applications. INTECH Open Access, Rijeka, CroatiaGoogle Scholar
  32. 32.
    Hu L et al (2011) Lithium‐ion textile batteries with large areal mass loading. Adv Energy Mater 1(6):1012–1017CrossRefGoogle Scholar
  33. 33.
    Liu B et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12(6):3005–3011CrossRefGoogle Scholar
  34. 34.
    Liu Y et al (2012) Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J Electrochem Soc 159(4):A349–A356CrossRefGoogle Scholar
  35. 35.
    Luo Y et al (2012) Seed-assisted synthesis of highly ordered TiO 2@ α-Fe 2 O 3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5(4):6559–6566CrossRefGoogle Scholar
  36. 36.
    Cheng Q et al (2013) Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Lett 13(10):4969–4974CrossRefGoogle Scholar
  37. 37.
    Zhou X et al (2014) Cotton-templated fabrication of hierarchical SnO2 mesoporous microtubes as the anode material of lithium ion battery. Mater Lett 120:279–282CrossRefGoogle Scholar
  38. 38.
    Laforgue A (2011) All-textile flexible supercapacitors using electrospun poly (3, 4-ethylenedioxythiophene) nanofibers. J Power Sources 196(1):559–564CrossRefGoogle Scholar
  39. 39.
    Yue B et al (2012) Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta 68:18–24CrossRefGoogle Scholar
  40. 40.
    Lee JA et al (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nature Commun 4:1970–1977Google Scholar
  41. 41.
    Meng Y et al (2013) All-graphene core‐sheath microfibers for all‐solid‐state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331CrossRefGoogle Scholar
  42. 42.
    Ma TY et al (2014) Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew Chem 54(15):4646–4650CrossRefGoogle Scholar
  43. 43.
    Yang P et al (2014) Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J Mater Chem A 2(3):595–599CrossRefGoogle Scholar
  44. 44.
    Zhang D et al (2014) Core spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8(5):4571-4579Google Scholar
  45. 45.
    Wu Q et al (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4):1963–1970CrossRefGoogle Scholar
  46. 46.
    Bonfiglio A et al (2005) Organic field effect transistors for textile applications. IEEE Trans Inf Technol Biomed 9(3):319–324CrossRefGoogle Scholar
  47. 47.
    Hamedi M, Forchheimer R, Inganas O (2007) Towards woven logic from organic electronic fibres. Nat Mater 6(5):357–362CrossRefGoogle Scholar
  48. 48.
    Hamedi M et al (2009) Fiber‐embedded electrolyte‐gated field‐effect transistors for e‐textiles. Adv Mater 21(5):573–577CrossRefGoogle Scholar
  49. 49.
    Bubnova O, Berggren M, Crispin X (2012) Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc 134(40):16456–16459CrossRefGoogle Scholar
  50. 50.
    Collins GE, Buckley L (1996) Conductive polymer-coated fabrics for chemical sensing. Synth Met 78(2):93–101CrossRefGoogle Scholar
  51. 51.
    Babel A et al (2005) Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules 38(11):4705–4711CrossRefGoogle Scholar
  52. 52.
    Jung YS et al (2008) Nanowire conductive polymer gas sensor patterned using self-assembled block copolymer lithography. Nano Lett 8(11):3776–3780CrossRefGoogle Scholar
  53. 53.
    Castano LM, Flatau AB (2014) Smart fabric sensors and e-textile technologies: a review. Smart Mater Struct 23(5):053001CrossRefGoogle Scholar
  54. 54.
    Forzani ES et al (2004) A conducting polymer nanojunction sensor for glucose detection. Nano Lett 4(9):1785–1788CrossRefGoogle Scholar
  55. 55.
    Shim BS et al (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8(12):4151–4157CrossRefGoogle Scholar
  56. 56.
    Shyamkumar P et al (2014) Wearable wireless cardiovascular monitoring using textile-based nanosensor and nanomaterial systems. Electronics 3(3):504–520CrossRefGoogle Scholar
  57. 57.
    Cochrane C et al (2011) Flexible displays for smart clothing: Part I-Overview. Indian J Fibre Textile Res 36(4):422Google Scholar
  58. 58.
    Kelly FM et al (2013) Polyaniline: application as solid state electrochromic in a flexible textile display. Displays 34(1):1–7CrossRefGoogle Scholar
  59. 59.
    Wang P-C et al (2013) Transparent electrodes based on conducting polymers for display applications. Displays 34(4):301–314CrossRefGoogle Scholar
  60. 60.
    Abu-Thabit N, Basheer R (2014) Nanostructured conductive composite filter electrodes for water sterealization by application of low electrical current. In: Proceedings of the 1st international electronic conference on materials, 26 May–10 June 2014. Sciforum Electronic Conference Series, vol 1, b015. doi: 10.3390/ecm-1-b015
  61. 61.
    Abu-Thabit NY, Basheer RA (2014) Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application. Mater Res Express 1(3):035010CrossRefGoogle Scholar
  62. 62.
    Basheer R, Abu-Thabit N (2012) High-speed water sterilization using conducting polymer-metal nanoparticles composite. Abstracts of papers of the American Chemical Society, Washington, DCGoogle Scholar
  63. 63.
    Liu C et al (2013) Conducting nanosponge electroporation for affordable and high-efficiency disinfection of bacteria and viruses in water. Nano Lett 13(9):4288–4293CrossRefGoogle Scholar
  64. 64.
    Liu C et al (2014) Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection. Nano Lett 14(10):5603–5608CrossRefGoogle Scholar
  65. 65.
    Schoen DT et al (2010) High speed water sterilization using one-dimensional nanostructures. Nano Lett 10(9):3628–3632CrossRefGoogle Scholar
  66. 66.
    Wang F et al (2010) A review of technology of personal heating garments. Int J Occup Saf Ergonom 16(3):387–404CrossRefGoogle Scholar
  67. 67.
    Hsu P-C et al (2014) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365-371Google Scholar
  68. 68.
    Matsunaga T et al (1992) Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes. Appl Environ Microbiol 58(2):686–689Google Scholar
  69. 69.
    Carrott P et al (2001) Preparation of activated carbon fibres from acrylic textile fibres. Carbon 39(10):1543–1555CrossRefGoogle Scholar
  70. 70.
    Ren Y, Lam DCC (2008) Properties and microstructures of low-temperature-processable ultralow-dielectric porous polyimide films. J Electron Mater 37(7):955–961CrossRefGoogle Scholar
  71. 71.
    Mark JE (2009) Polymer data handbook, vol 27. Oxford University Press, New York, NYGoogle Scholar
  72. 72.
    Zeng W et al (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336CrossRefGoogle Scholar
  73. 73.
    Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5(4):6423–6435CrossRefGoogle Scholar
  74. 74.
    Wei Q (2009) Surface modification of textiles.Woodhead Publishing Limited, Cambridge, UK Google Scholar
  75. 75.
    Jur J et al (2011) Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: conductivity analysis and functional chemical sensing using “all‐fiber” capacitors. Adv Funct Mater 21(11):1993–2002CrossRefGoogle Scholar
  76. 76.
    Marichy C, Bechelany M, Pinna N (2012) Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv Mater 24(8):1017–1032CrossRefGoogle Scholar
  77. 77.
    Wang K et al (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1):14–31CrossRefGoogle Scholar
  78. 78.
    Abu-Thabit NY, Makhlouf ASH (2014) Chapter 17 – Recent advances in polyaniline (PANI)-based organic coatings for corrosion protection. In: Makhlouf ASH (ed) Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge, pp 459–486CrossRefGoogle Scholar
  79. 79.
    Horng Y-Y et al (2010) Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J Power Sources 195(13):4418–4422CrossRefGoogle Scholar
  80. 80.
    Cheng Q et al (2011) Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors. J Phys Chem C 115(47):23584–23590CrossRefGoogle Scholar
  81. 81.
    Dubal DP et al (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22(7):3044–3052CrossRefGoogle Scholar
  82. 82.
    Kuila BK et al (2009) Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chem Commun 38:5749–5751CrossRefGoogle Scholar
  83. 83.
    Stejskal J, Sapurina I, Trchova M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481CrossRefGoogle Scholar
  84. 84.
    Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17(21):5319CrossRefGoogle Scholar
  85. 85.
    Jeon J-W, Kwon SR, Lutkenhaus JL (2015) Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J Mater Chem A 3(7):3757–3767CrossRefGoogle Scholar
  86. 86.
    Guan H et al (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56(2):964–968CrossRefGoogle Scholar
  87. 87.
    Hao Q et al (2011) Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res 4(4):323–333CrossRefGoogle Scholar
  88. 88.
    Zhang X et al (2004) Nanofibers of polyaniline synthesized by interfacial polymerization. Synth Met 145(1):23–29CrossRefGoogle Scholar
  89. 89.
    Wu C-G, Bein T (1994) Conducting polyaniline filaments in a mesoporous channel host. Science 264(5166):1757–1759CrossRefGoogle Scholar
  90. 90.
    Menon VP, Lei J, Martin CR (1996) Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils. Chem Mater 8(9):2382–2390CrossRefGoogle Scholar
  91. 91.
    Choi SJ, Park SM (2000) Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates. Adv Mater 12(20):1547–1549CrossRefGoogle Scholar
  92. 92.
    Zhong W et al (2005) Synthesis of large‐area three‐dimensional polyaniline nanowire networks using a “soft template”. Macromol Rapid Commun 26(5):395–400CrossRefGoogle Scholar
  93. 93.
    Pillalamarri SK et al (2005) Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway. Chem Mater 17(2):227–229CrossRefGoogle Scholar
  94. 94.
    Zhang X, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by “nanofiber seeding”. J Am Chem Soc 126(14):4502–4503CrossRefGoogle Scholar
  95. 95.
    Li W, Wang H-L (2004) Oligomer-assisted synthesis of chiral polyaniline nanofibers. J Am Chem Soc 126(8):2278–2279CrossRefGoogle Scholar
  96. 96.
    Chiou NR, Epstein AJ (2005) Polyaniline nanofibers prepared by dilute polymerization. Adv Mater 17(13):1679–1683CrossRefGoogle Scholar
  97. 97.
    Zhang X et al (2006) Fibrillar growth in polyaniline. Adv Funct Mater 16(9):1145–1152CrossRefGoogle Scholar
  98. 98.
    Zhang X, Manohar SK (2004) Polyaniline nanofibers: chemical synthesis using surfactants. Chem Commun 20:2360–2361CrossRefGoogle Scholar
  99. 99.
    Li G, Jiang L, Peng H (2007) One-dimensional polyaniline nanostructures with controllable surfaces and diameters using vanadic acid as the oxidant. Macromolecules 40(22):7890–7894CrossRefGoogle Scholar
  100. 100.
    Winther-Jensen B, West K (2004) Vapor-phase polymerization of 3, 4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37(12):4538–4543CrossRefGoogle Scholar
  101. 101.
    Najar SS, Kaynak A, Foitzik RC (2007) Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synth Met 157(1):1–4CrossRefGoogle Scholar
  102. 102.
    Dall’Acqua L et al (2006) Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synth Met 156(5):379–386CrossRefGoogle Scholar
  103. 103.
    Lee H-H, Chou K-S, Huang K-C (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16(10):2436CrossRefGoogle Scholar
  104. 104.
    Perelaer J et al (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20(16):165303CrossRefGoogle Scholar
  105. 105.
    Jang J, Ha J, Cho J (2007) Fabrication of water‐dispersible polyaniline‐poly (4‐styrenesulfonate) nanoparticles for inkjet‐printed chemical‐sensor applications. Adv Mater 19(13):1772–1775CrossRefGoogle Scholar
  106. 106.
    Chiolerio A, Bocchini S, Porro S (2014) Inkjet printed negative supercapacitors: synthesis of polyaniline‐based inks, doping agent effect, and advanced electronic devices applications. Adv Funct Mater 24(22):3375–3383CrossRefGoogle Scholar
  107. 107.
    Xu Y et al (2014) Inkjet-printed energy storage device using graphene/polyaniline inks. J Power Sources 248:483–488CrossRefGoogle Scholar
  108. 108.
    Kaempgen M et al (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9(5):1872–1876CrossRefGoogle Scholar
  109. 109.
    Chen P et al (2010) Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res 3(8):594–603CrossRefGoogle Scholar
  110. 110.
    Tortorich RP, Choi J-W (2013) Inkjet printing of carbon nanotubes. Nanomaterials 3(3):453–468CrossRefGoogle Scholar
  111. 111.
    Huang L et al (2011) Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res 4(7):675–684CrossRefGoogle Scholar
  112. 112.
    Kong D et al (2012) Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28(37):13467–13472CrossRefGoogle Scholar
  113. 113.
    Li J et al (2013) Efficient inkjet printing of graphene. Adv Mater 25(29):3985–3992CrossRefGoogle Scholar
  114. 114.
    Le LT et al (2011) Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem Commun 13(4):355–358CrossRefGoogle Scholar
  115. 115.
    Cummins G, Desmulliez MP (2012) Inkjet printing of conductive materials: a review. Circuit World 38(4):193–213CrossRefGoogle Scholar
  116. 116.
    Walker SB, Lewis JA (2012) Reactive silver inks for patterning high-conductivity features at mild temperatures. J Am Chem Soc 134(3):1419–1421CrossRefGoogle Scholar
  117. 117.
    Li D et al (2009) Conductive copper and nickel lines via reactive inkjet printing. J Mater Chem 19(22):3719–3724CrossRefGoogle Scholar
  118. 118.
    Meoli D, May-Plumlee T (2002) Interactive electronic textile development: a review of technologies. J Textile Apparel Technol Manage 2(2):1–12Google Scholar
  119. 119.
    Kazani I et al (2012) Electrical conductive textiles obtained by screen printing. Fibres Textiles East Eur 90(1):57–63Google Scholar
  120. 120.
    Behabtu N et al (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116):182–186CrossRefGoogle Scholar
  121. 121.
    Dalton AB et al (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703CrossRefGoogle Scholar
  122. 122.
    Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361CrossRefGoogle Scholar
  123. 123.
    Cong H-P et al (2012) Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci Rep 2, 613CrossRefGoogle Scholar
  124. 124.
    Dong Z et al (2012) Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater 24(14):1856–1861CrossRefGoogle Scholar
  125. 125.
    Xu Z et al (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25(2):188–193CrossRefGoogle Scholar
  126. 126.
    Cheng H et al (2013) Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5(8):3428–3434CrossRefGoogle Scholar
  127. 127.
    Sun H et al (2014) Novel graphene/carbon nanotube composite fibers for efficient wire‐shaped miniature energy devices. Adv Mater 26(18):2868–2873CrossRefGoogle Scholar
  128. 128.
    Xu Z et al (2013) Highly electrically conductive ag‐doped graphene fibers as stretchable conductors. Adv Mater 25(23):3249–3253CrossRefGoogle Scholar
  129. 129.
    Peng H (2015) Electrically conducting fiber. In: Fiber-shaped energy harvesting and storage devices. Springer, Berlin, pp 7–38Google Scholar
  130. 130.
    Bowman D, Mattes B (2005) Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154(1):29–32CrossRefGoogle Scholar
  131. 131.
    Pomfret SJ et al (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 41(6):2265–2269CrossRefGoogle Scholar
  132. 132.
    Pomfret SJ et al (1998) Inherently electrically conductive fibers wet spun from a sulfonic acid–doped polyaniline solution. Adv Mater 10(16):1351–1353CrossRefGoogle Scholar
  133. 133.
    Mottaghitalab V, Spinks GM, Wallace GG (2005) The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synth Met 152(1):77–80CrossRefGoogle Scholar
  134. 134.
    Okuzaki H, Ishihara M (2003) Spinning and characterization of conducting microfibers. Macromol Rapid Commun 24(3):261–264CrossRefGoogle Scholar
  135. 135.
    Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45(1):256–261CrossRefGoogle Scholar
  136. 136.
    Jalili R et al (2011) One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21(17):3363–3370CrossRefGoogle Scholar
  137. 137.
    Lima MD et al (2011) Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013):51–55CrossRefGoogle Scholar
  138. 138.
    Fang S et al (2012) Fabrication of biscrolled fiber using carbon nanotube sheet. US Patent No 8,968,756. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  139. 139.
    Jost K et al (2014) Natural fiber welded electrode yarns for knittable textile supercapacitors. Adv Energy Mater 5(4):1–8Google Scholar
  140. 140.
    Haverhals LM et al (2010) Natural fiber welding. Macromol Mater Eng 295(5):425–430CrossRefGoogle Scholar
  141. 141.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRefGoogle Scholar
  142. 142.
    Yan J et al (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4(4):1-43Google Scholar
  143. 143.
    Yu G et al (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2):213–234CrossRefGoogle Scholar
  144. 144.
    Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRefGoogle Scholar
  145. 145.
    Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950CrossRefGoogle Scholar
  146. 146.
    Zhu Y et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541CrossRefGoogle Scholar
  147. 147.
    Cottineau T et al (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82(4):599–606CrossRefGoogle Scholar
  148. 148.
    Deng W et al (2011) Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv 1(7):1171–1178CrossRefGoogle Scholar
  149. 149.
    Lang X et al (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236CrossRefGoogle Scholar
  150. 150.
    Dubal D et al (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790CrossRefGoogle Scholar
  151. 151.
    Qu Q et al (2012) Core–shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater 2(8):950–955CrossRefGoogle Scholar
  152. 152.
    Zhang K et al (2015) Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. J Mater Chem A 3(2):617–623CrossRefGoogle Scholar
  153. 153.
    Hu L et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714CrossRefGoogle Scholar
  154. 154.
    Huang Y et al (2015) High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co3O4/MnO2 hybrid electrodes. RSC Adv 5(24):18952–18959CrossRefGoogle Scholar
  155. 155.
    Jiang Y et al (2015) Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high-performance electrochemical capacitors. Electrochim Acta 153:246–253CrossRefGoogle Scholar
  156. 156.
    Zhang Z et al (2015) Superelastic supercapacitors with high performances during stretching. Adv Mater 27(2):356–362CrossRefGoogle Scholar
  157. 157.
    Dong L et al (2015) High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. J Mater Chem A 3(8):4729–4737CrossRefGoogle Scholar
  158. 158.
    Shown I et al (2015) Conducting polymer‐based flexible supercapacitor. Energy Sci Eng 3(1):2–26CrossRefGoogle Scholar
  159. 159.
    Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. J Electrochem Soc 17(1):34–37Google Scholar
  160. 160.
    Shirakawa H, McDiarmid A, Heeger A (2003) Twenty-five years of conducting polymers. Chem Commun 2003(1):1–4CrossRefGoogle Scholar
  161. 161.
    Novák P et al (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–282CrossRefGoogle Scholar
  162. 162.
    Li FS et al (2015) A mechanically robust and highly ion‐conductive polymer‐blend coating for high‐power and long‐life lithium‐ion battery anodes. Adv Mater 27(1):130–137CrossRefGoogle Scholar
  163. 163.
    Peng C et al (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18(7):777–788CrossRefGoogle Scholar
  164. 164.
    Li H et al (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190(2):578–586CrossRefGoogle Scholar
  165. 165.
    Chen W, Rakhi RB, Alshareef HN (2013) Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J Mater Chem A 1(10):3315–3324CrossRefGoogle Scholar
  166. 166.
    Fusalba F et al (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148(1):A1–A6CrossRefGoogle Scholar
  167. 167.
    Tan YT et al (2013) Synthesis and electrochemical properties of hollow polyaniline microspheres by a sulfonated polystyrene template. J Appl Polym Sci 127(3):1544–1549CrossRefGoogle Scholar
  168. 168.
    Lu YF et al (2007) Direct electrochemistry and bioelectrocatalysis of myoglobin at a carbon nanotube-modified electrode. Acta Phys Chim Sin 23(1):5–11CrossRefGoogle Scholar
  169. 169.
    Yang H-S, Zhou X, Zhang Q (2005) Electrochemical performances of supercapacitor with polyaniline particles with hierarchy as active electrode material. Acta Phys Chim Sin 21(04):414–418Google Scholar
  170. 170.
    Xiong SX et al (2012) Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochim Acta 85:235–242CrossRefGoogle Scholar
  171. 171.
    Gupta V, Miura N (2005) Electrochemically deposited polyaniline nanowire’s network – a high-performance electrode material for redox supercapacitor. Electrochem Solid State Lett 8(12):A630–A632CrossRefGoogle Scholar
  172. 172.
    Wang K, Huang JY, Wei ZX (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114(17):8062–8067CrossRefGoogle Scholar
  173. 173.
    Kim BC et al (2010) Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber. Synth Met 160(1–2):94–98CrossRefGoogle Scholar
  174. 174.
    Sharma R, Rastogi A, Desu S (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem Commun 10(2):268–272CrossRefGoogle Scholar
  175. 175.
    Zhang D et al (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196(14):5990–5996CrossRefGoogle Scholar
  176. 176.
    Ingram MD, Staesche H, Ryder KS (2004) ‘Activated’ polypyrrole electrodes for high-power supercapacitor applications. Solid State Ion 169(1):51–57CrossRefGoogle Scholar
  177. 177.
    Yuan L et al (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6(2):470–476CrossRefGoogle Scholar
  178. 178.
    Yue B et al (2013) Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor. Electrochim Acta 113:17–22CrossRefGoogle Scholar
  179. 179.
    Huang Y et al (2015) Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11:518–525CrossRefGoogle Scholar
  180. 180.
    Firoz Babu K, Siva Subramanian SP, Anbu Kulandainathan M (2013) Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohydr Polym 94(1):487–495CrossRefGoogle Scholar
  181. 181.
    Carlberg J, Inganäs O (1997) Poly (3, 4‐ethylenedioxythiophene) as electrode material in electrochemical capacitors. J Electrochem Soc 144(4):L61–L64CrossRefGoogle Scholar
  182. 182.
    Ryu KS et al (2004) Poly (ethylenedioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor. Electrochim Acta 50(2):843–847CrossRefGoogle Scholar
  183. 183.
    Stenger-Smith JD et al (2002) Poly (3, 4-alkylenedioxythiophene)-based supercapacitors using ionic liquids as supporting electrolytes. J Electrochem Soc 149(8):A973–A977CrossRefGoogle Scholar
  184. 184.
    Alvi F et al (2011) Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim Acta 56(25):9406–9412CrossRefGoogle Scholar
  185. 185.
    Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924CrossRefGoogle Scholar
  186. 186.
    Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534CrossRefGoogle Scholar
  187. 187.
    Liu C et al (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868CrossRefGoogle Scholar
  188. 188.
    Yan J et al (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2):487–493CrossRefGoogle Scholar
  189. 189.
    Yan J et al (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195(9):3041–3045CrossRefGoogle Scholar
  190. 190.
    Xu Y et al (2013) Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv Energy Mater 3(8):1035–1040CrossRefGoogle Scholar
  191. 191.
    Fan T et al (2015) Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. Synth Met 199:79–86CrossRefGoogle Scholar
  192. 192.
    Pan S et al (2014) Novel wearable energy devices based on aligned carbon nanotube fiber textiles. Adv Energy Mater 5(4):1–8Google Scholar
  193. 193.
    Peng H (2015) Fiber-shaped energy harvesting and storage devices. Springer, BerlinCrossRefGoogle Scholar
  194. 194.
    Wang K et al (2013) High‐performance two‐ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25(10):1494–1498CrossRefGoogle Scholar
  195. 195.
    Lu W et al (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297(5583):983–987CrossRefGoogle Scholar
  196. 196.
    Meunier L et al (2011) Flexible displays for smart clothing: Part II-Electrochromic displays. Indian J Fibre Textile Res 36(4):429Google Scholar
  197. 197.
    Chen X et al (2014) Electrochromic fiber‐shaped supercapacitors. Adv Mater 26(48):8126–8132CrossRefGoogle Scholar
  198. 198.
    Huang Y et al (2015) From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano. doi: 10.1021/acsnano.5b00860 Google Scholar
  199. 199.
    Lee MR et al (2009) Solar power wires based on organic photovoltaic materials. Science 324(5924):232–235CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nedal Y. Abu-Thabit
    • 1
  • Abdel Salam Hamdy Makhlouf
    • 2
    Email author
  1. 1.Department of Chemical and Process Engineering TechnologyJubail Industrial CollegeJubail Industrial CityKingdom of Saudi Arabia
  2. 2.Manufacturing and Industrial Engineering DepartmentCollege of Engineering and Computer Science, The University of Texas – Rio Grande ValleyEdinburgUSA

Personalised recommendations