Skip to main content

Smart Textile Supercapacitors Coated with Conducting Polymers for Energy Storage Applications

  • Chapter
  • First Online:
Industrial Applications for Intelligent Polymers and Coatings

Abstract

Over the last few years, the development of nanotechnology has resulted in generation of new materials and innovation for a wide range of applications and products. Among these applications, textile industry is expected to hold a considerable potential for the development of advanced nano-based materials. For example, nanotechnology enabled the production of novel smart “multifunctional” textiles with combined properties in one fabric. Conductive textiles represent a key class of smart textiles with promising future’s applications in areas such as electronic textiles, display devices, health monitoring devices, thermal and moisture management, flexible energy storage, and power generation devices. Recently, a remarkable attention has been devoted to the development of textile supercapacitor for energy storage and wearable electronics applications. Supercapacitor textiles offer advantages such as lightweight, flexibility, stretchability, and ease of integration with electronic textiles. Different approaches have been investigated for fabrication of smart conductive textiles for supercapacitor applications. Among these approaches, textiles coated with electrically conducting polymers (ECPs) are one of the most promising and facile approaches for fabrication of textile supercapacitors. ECP-coated textiles are characterized with high specific capacitance through fast redox reaction ease of integration into planar, flexible, and stretchable textile substrates with various shapes and large areas, thin film fabrication with controlled nanostructured morphology, and applicability for fabrication of composite and asymmetric textile supercapacitors. This chapter highlights the recent advances and developments in the fabrication of ECP-based textile supercapacitors, including different types of pure ECPs and their composites with other conducting materials for preparation of hybrid supercapacitors with superior performance for textile supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoppa M, Chiolerio A (2014) Wearable electronics and smart textiles: a critical review. Sensors 14(7):11957–11992

    Article  Google Scholar 

  2. http://www.textileworld.com/Articles/2015/February/The_Rupp_Report-Successful_Technical_Textiles_Part_II (Last Accessed Dec 10, 2015)

  3. Jinlian H et al (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21(5):053001

    Article  Google Scholar 

  4. Stuart MAC et al (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113

    Article  Google Scholar 

  5. Li Z et al (2014) Ag nanoparticle–ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach. Nanotechnology 25(14):145702

    Article  Google Scholar 

  6. Kowal K et al (2014) Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections. RSC Adv 4(38):19945–19952

    Article  Google Scholar 

  7. Li Y-C et al (2010) Flame retardant behavior of polyelectrolyte−clay thin film assemblies on cotton fabric. ACS Nano 4(6):3325–3337

    Article  Google Scholar 

  8. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96(3):377–392

    Article  Google Scholar 

  9. Cain AA et al (2014) Intumescent nanocoating extinguishes flame on fabric using aqueous polyelectrolyte complex deposited in single step. Macromol Mater Eng 299(10):1180–1187

    Article  Google Scholar 

  10. Carosio F et al (2014) Flame retardancy of polyester and polyester–cotton blends treated with caseins. Indus Eng Chem Res 53(10):3917–3923

    Article  Google Scholar 

  11. Hu J (2007) Chapter 10 – Shape memory textiles. In: Hu J (ed) Shape memory polymers and textiles. Woodhead Publishing, Cambridge, pp 305–337

    Chapter  Google Scholar 

  12. Mattila H (2015) Chapter 15 – Yarn to fabric: intelligent textiles. In: Sinclair R (ed) Textiles and fashion. Woodhead Publishing, Cambridge, pp 355–376

    Google Scholar 

  13. Hu J (2013) Chapter 10 – Shape memory finishing treatments for smart textiles. In: Hu J (ed) Advances in shape memory polymers. Woodhead Publishing, Cambridge, pp 259–280

    Chapter  Google Scholar 

  14. Gugliuzza A, Drioli E (2013) A review on membrane engineering for innovation in wearable fabrics and protective textiles. J Membr Sci 446:350–375

    Article  Google Scholar 

  15. Hsu P-C et al (2015) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365–371

    Article  Google Scholar 

  16. Wang X et al (2014) Smart hydrogel-functionalized textile system with moisture management property for skin application. Smart Mater Struct 23(12):125027

    Article  Google Scholar 

  17. Yu D et al (2014) Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol-ene click reactions. ACS Appl Mater Interfaces 6(2):1236–1242

    Article  Google Scholar 

  18. Wang X et al (2015) Effect of surface modifications on the thermal and moisture behavior of wool fabric. Appl Surf Sci 342:101–105

    Article  Google Scholar 

  19. Qi K et al (2006) Self-cleaning cotton. J Mater Chem 16(47):4567–4574

    Article  Google Scholar 

  20. Qi K et al (2007) Facile preparation of anatase/SiO2 spherical nanocomposites and their application in self-cleaning textiles. J Mater Chem 17(33):3504–3508

    Article  Google Scholar 

  21. Bedford N, Steckl A (2010) Photocatalytic self cleaning textile fibers by coaxial electrospinning. ACS Appl Mater Interfaces 2(8):2448–2455

    Article  Google Scholar 

  22. Afzal S, Daoud WA, Langford SJ (2014) Superhydrophobic and photocatalytic self-cleaning cotton. J Mater Chem A 2(42):18005–18011

    Article  Google Scholar 

  23. Lina MC, Alison BF (2014) Smart fabric sensors and e-textile technologies: a review. Smart Mater Struct 23(5):053001

    Article  Google Scholar 

  24. Hang Q, Oleg S, Maksim S (2015) Flexible fiber batteries for applications in smart textiles. Smart Mater Struct 24(2):025012

    Article  Google Scholar 

  25. Saeed SE-S et al (2014) Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials. Carbohydr Polym 99:817–824

    Article  Google Scholar 

  26. Zhang P et al (2015) Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters. Biomaterials 36:26–32

    Article  Google Scholar 

  27. Yang H, Lightner CR, Dong L (2011) Light-emitting coaxial nanofibers. ACS Nano 6(1):622–628

    Article  Google Scholar 

  28. Lv Z et al (2012) Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array. Nanoscale 4(4):1248–1253

    Article  Google Scholar 

  29. Yun MJ et al (2014) Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth. Sci Rep 4:5322

    Google Scholar 

  30. Liu Z et al (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44(1):161–192

    Article  Google Scholar 

  31. Singh MK (2011) Flexible photovoltaic textiles for smart applications. INTECH Open Access, Rijeka, Croatia

    Google Scholar 

  32. Hu L et al (2011) Lithium‐ion textile batteries with large areal mass loading. Adv Energy Mater 1(6):1012–1017

    Article  Google Scholar 

  33. Liu B et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12(6):3005–3011

    Article  Google Scholar 

  34. Liu Y et al (2012) Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles. J Electrochem Soc 159(4):A349–A356

    Article  Google Scholar 

  35. Luo Y et al (2012) Seed-assisted synthesis of highly ordered TiO 2@ α-Fe 2 O 3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5(4):6559–6566

    Article  Google Scholar 

  36. Cheng Q et al (2013) Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Lett 13(10):4969–4974

    Article  Google Scholar 

  37. Zhou X et al (2014) Cotton-templated fabrication of hierarchical SnO2 mesoporous microtubes as the anode material of lithium ion battery. Mater Lett 120:279–282

    Article  Google Scholar 

  38. Laforgue A (2011) All-textile flexible supercapacitors using electrospun poly (3, 4-ethylenedioxythiophene) nanofibers. J Power Sources 196(1):559–564

    Article  Google Scholar 

  39. Yue B et al (2012) Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta 68:18–24

    Article  Google Scholar 

  40. Lee JA et al (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nature Commun 4:1970–1977

    Google Scholar 

  41. Meng Y et al (2013) All-graphene core‐sheath microfibers for all‐solid‐state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331

    Article  Google Scholar 

  42. Ma TY et al (2014) Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew Chem 54(15):4646–4650

    Article  Google Scholar 

  43. Yang P et al (2014) Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J Mater Chem A 2(3):595–599

    Article  Google Scholar 

  44. Zhang D et al (2014) Core spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8(5):4571-4579

    Google Scholar 

  45. Wu Q et al (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4):1963–1970

    Article  Google Scholar 

  46. Bonfiglio A et al (2005) Organic field effect transistors for textile applications. IEEE Trans Inf Technol Biomed 9(3):319–324

    Article  Google Scholar 

  47. Hamedi M, Forchheimer R, Inganas O (2007) Towards woven logic from organic electronic fibres. Nat Mater 6(5):357–362

    Article  Google Scholar 

  48. Hamedi M et al (2009) Fiber‐embedded electrolyte‐gated field‐effect transistors for e‐textiles. Adv Mater 21(5):573–577

    Article  Google Scholar 

  49. Bubnova O, Berggren M, Crispin X (2012) Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc 134(40):16456–16459

    Article  Google Scholar 

  50. Collins GE, Buckley L (1996) Conductive polymer-coated fabrics for chemical sensing. Synth Met 78(2):93–101

    Article  Google Scholar 

  51. Babel A et al (2005) Electrospun nanofibers of blends of conjugated polymers: morphology, optical properties, and field-effect transistors. Macromolecules 38(11):4705–4711

    Article  Google Scholar 

  52. Jung YS et al (2008) Nanowire conductive polymer gas sensor patterned using self-assembled block copolymer lithography. Nano Lett 8(11):3776–3780

    Article  Google Scholar 

  53. Castano LM, Flatau AB (2014) Smart fabric sensors and e-textile technologies: a review. Smart Mater Struct 23(5):053001

    Article  Google Scholar 

  54. Forzani ES et al (2004) A conducting polymer nanojunction sensor for glucose detection. Nano Lett 4(9):1785–1788

    Article  Google Scholar 

  55. Shim BS et al (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8(12):4151–4157

    Article  Google Scholar 

  56. Shyamkumar P et al (2014) Wearable wireless cardiovascular monitoring using textile-based nanosensor and nanomaterial systems. Electronics 3(3):504–520

    Article  Google Scholar 

  57. Cochrane C et al (2011) Flexible displays for smart clothing: Part I-Overview. Indian J Fibre Textile Res 36(4):422

    Google Scholar 

  58. Kelly FM et al (2013) Polyaniline: application as solid state electrochromic in a flexible textile display. Displays 34(1):1–7

    Article  Google Scholar 

  59. Wang P-C et al (2013) Transparent electrodes based on conducting polymers for display applications. Displays 34(4):301–314

    Article  Google Scholar 

  60. Abu-Thabit N, Basheer R (2014) Nanostructured conductive composite filter electrodes for water sterealization by application of low electrical current. In: Proceedings of the 1st international electronic conference on materials, 26 May–10 June 2014. Sciforum Electronic Conference Series, vol 1, b015. doi:10.3390/ecm-1-b015

  61. Abu-Thabit NY, Basheer RA (2014) Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application. Mater Res Express 1(3):035010

    Article  Google Scholar 

  62. Basheer R, Abu-Thabit N (2012) High-speed water sterilization using conducting polymer-metal nanoparticles composite. Abstracts of papers of the American Chemical Society, Washington, DC

    Google Scholar 

  63. Liu C et al (2013) Conducting nanosponge electroporation for affordable and high-efficiency disinfection of bacteria and viruses in water. Nano Lett 13(9):4288–4293

    Article  Google Scholar 

  64. Liu C et al (2014) Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection. Nano Lett 14(10):5603–5608

    Article  Google Scholar 

  65. Schoen DT et al (2010) High speed water sterilization using one-dimensional nanostructures. Nano Lett 10(9):3628–3632

    Article  Google Scholar 

  66. Wang F et al (2010) A review of technology of personal heating garments. Int J Occup Saf Ergonom 16(3):387–404

    Article  Google Scholar 

  67. Hsu P-C et al (2014) Personal thermal management by metallic nanowire-coated textile. Nano Lett 15(1):365-371

    Google Scholar 

  68. Matsunaga T et al (1992) Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes. Appl Environ Microbiol 58(2):686–689

    Google Scholar 

  69. Carrott P et al (2001) Preparation of activated carbon fibres from acrylic textile fibres. Carbon 39(10):1543–1555

    Article  Google Scholar 

  70. Ren Y, Lam DCC (2008) Properties and microstructures of low-temperature-processable ultralow-dielectric porous polyimide films. J Electron Mater 37(7):955–961

    Article  Google Scholar 

  71. Mark JE (2009) Polymer data handbook, vol 27. Oxford University Press, New York, NY

    Google Scholar 

  72. Zeng W et al (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336

    Article  Google Scholar 

  73. Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5(4):6423–6435

    Article  Google Scholar 

  74. Wei Q (2009) Surface modification of textiles.Woodhead Publishing Limited, Cambridge, UK

    Google Scholar 

  75. Jur J et al (2011) Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: conductivity analysis and functional chemical sensing using “all‐fiber” capacitors. Adv Funct Mater 21(11):1993–2002

    Article  Google Scholar 

  76. Marichy C, Bechelany M, Pinna N (2012) Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv Mater 24(8):1017–1032

    Article  Google Scholar 

  77. Wang K et al (2014) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1):14–31

    Article  Google Scholar 

  78. Abu-Thabit NY, Makhlouf ASH (2014) Chapter 17 – Recent advances in polyaniline (PANI)-based organic coatings for corrosion protection. In: Makhlouf ASH (ed) Handbook of smart coatings for materials protection. Woodhead Publishing, Cambridge, pp 459–486

    Chapter  Google Scholar 

  79. Horng Y-Y et al (2010) Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J Power Sources 195(13):4418–4422

    Article  Google Scholar 

  80. Cheng Q et al (2011) Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors. J Phys Chem C 115(47):23584–23590

    Article  Google Scholar 

  81. Dubal DP et al (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22(7):3044–3052

    Article  Google Scholar 

  82. Kuila BK et al (2009) Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chem Commun 38:5749–5751

    Article  Google Scholar 

  83. Stejskal J, Sapurina I, Trchova M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481

    Article  Google Scholar 

  84. Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17(21):5319

    Article  Google Scholar 

  85. Jeon J-W, Kwon SR, Lutkenhaus JL (2015) Polyaniline nanofiber/electrochemically reduced graphene oxide layer-by-layer electrodes for electrochemical energy storage. J Mater Chem A 3(7):3757–3767

    Article  Google Scholar 

  86. Guan H et al (2010) Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim Acta 56(2):964–968

    Article  Google Scholar 

  87. Hao Q et al (2011) Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res 4(4):323–333

    Article  Google Scholar 

  88. Zhang X et al (2004) Nanofibers of polyaniline synthesized by interfacial polymerization. Synth Met 145(1):23–29

    Article  Google Scholar 

  89. Wu C-G, Bein T (1994) Conducting polyaniline filaments in a mesoporous channel host. Science 264(5166):1757–1759

    Article  Google Scholar 

  90. Menon VP, Lei J, Martin CR (1996) Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils. Chem Mater 8(9):2382–2390

    Article  Google Scholar 

  91. Choi SJ, Park SM (2000) Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates. Adv Mater 12(20):1547–1549

    Article  Google Scholar 

  92. Zhong W et al (2005) Synthesis of large‐area three‐dimensional polyaniline nanowire networks using a “soft template”. Macromol Rapid Commun 26(5):395–400

    Article  Google Scholar 

  93. Pillalamarri SK et al (2005) Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway. Chem Mater 17(2):227–229

    Article  Google Scholar 

  94. Zhang X, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by “nanofiber seeding”. J Am Chem Soc 126(14):4502–4503

    Article  Google Scholar 

  95. Li W, Wang H-L (2004) Oligomer-assisted synthesis of chiral polyaniline nanofibers. J Am Chem Soc 126(8):2278–2279

    Article  Google Scholar 

  96. Chiou NR, Epstein AJ (2005) Polyaniline nanofibers prepared by dilute polymerization. Adv Mater 17(13):1679–1683

    Article  Google Scholar 

  97. Zhang X et al (2006) Fibrillar growth in polyaniline. Adv Funct Mater 16(9):1145–1152

    Article  Google Scholar 

  98. Zhang X, Manohar SK (2004) Polyaniline nanofibers: chemical synthesis using surfactants. Chem Commun 20:2360–2361

    Article  Google Scholar 

  99. Li G, Jiang L, Peng H (2007) One-dimensional polyaniline nanostructures with controllable surfaces and diameters using vanadic acid as the oxidant. Macromolecules 40(22):7890–7894

    Article  Google Scholar 

  100. Winther-Jensen B, West K (2004) Vapor-phase polymerization of 3, 4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37(12):4538–4543

    Article  Google Scholar 

  101. Najar SS, Kaynak A, Foitzik RC (2007) Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synth Met 157(1):1–4

    Article  Google Scholar 

  102. Dall’Acqua L et al (2006) Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synth Met 156(5):379–386

    Article  Google Scholar 

  103. Lee H-H, Chou K-S, Huang K-C (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16(10):2436

    Article  Google Scholar 

  104. Perelaer J et al (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20(16):165303

    Article  Google Scholar 

  105. Jang J, Ha J, Cho J (2007) Fabrication of water‐dispersible polyaniline‐poly (4‐styrenesulfonate) nanoparticles for inkjet‐printed chemical‐sensor applications. Adv Mater 19(13):1772–1775

    Article  Google Scholar 

  106. Chiolerio A, Bocchini S, Porro S (2014) Inkjet printed negative supercapacitors: synthesis of polyaniline‐based inks, doping agent effect, and advanced electronic devices applications. Adv Funct Mater 24(22):3375–3383

    Article  Google Scholar 

  107. Xu Y et al (2014) Inkjet-printed energy storage device using graphene/polyaniline inks. J Power Sources 248:483–488

    Article  Google Scholar 

  108. Kaempgen M et al (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9(5):1872–1876

    Article  Google Scholar 

  109. Chen P et al (2010) Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res 3(8):594–603

    Article  Google Scholar 

  110. Tortorich RP, Choi J-W (2013) Inkjet printing of carbon nanotubes. Nanomaterials 3(3):453–468

    Article  Google Scholar 

  111. Huang L et al (2011) Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res 4(7):675–684

    Article  Google Scholar 

  112. Kong D et al (2012) Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28(37):13467–13472

    Article  Google Scholar 

  113. Li J et al (2013) Efficient inkjet printing of graphene. Adv Mater 25(29):3985–3992

    Article  Google Scholar 

  114. Le LT et al (2011) Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem Commun 13(4):355–358

    Article  Google Scholar 

  115. Cummins G, Desmulliez MP (2012) Inkjet printing of conductive materials: a review. Circuit World 38(4):193–213

    Article  Google Scholar 

  116. Walker SB, Lewis JA (2012) Reactive silver inks for patterning high-conductivity features at mild temperatures. J Am Chem Soc 134(3):1419–1421

    Article  Google Scholar 

  117. Li D et al (2009) Conductive copper and nickel lines via reactive inkjet printing. J Mater Chem 19(22):3719–3724

    Article  Google Scholar 

  118. Meoli D, May-Plumlee T (2002) Interactive electronic textile development: a review of technologies. J Textile Apparel Technol Manage 2(2):1–12

    Google Scholar 

  119. Kazani I et al (2012) Electrical conductive textiles obtained by screen printing. Fibres Textiles East Eur 90(1):57–63

    Google Scholar 

  120. Behabtu N et al (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116):182–186

    Article  Google Scholar 

  121. Dalton AB et al (2003) Super-tough carbon-nanotube fibres. Nature 423(6941):703

    Article  Google Scholar 

  122. Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361

    Article  Google Scholar 

  123. Cong H-P et al (2012) Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci Rep 2, 613

    Article  Google Scholar 

  124. Dong Z et al (2012) Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater 24(14):1856–1861

    Article  Google Scholar 

  125. Xu Z et al (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25(2):188–193

    Article  Google Scholar 

  126. Cheng H et al (2013) Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5(8):3428–3434

    Article  Google Scholar 

  127. Sun H et al (2014) Novel graphene/carbon nanotube composite fibers for efficient wire‐shaped miniature energy devices. Adv Mater 26(18):2868–2873

    Article  Google Scholar 

  128. Xu Z et al (2013) Highly electrically conductive ag‐doped graphene fibers as stretchable conductors. Adv Mater 25(23):3249–3253

    Article  Google Scholar 

  129. Peng H (2015) Electrically conducting fiber. In: Fiber-shaped energy harvesting and storage devices. Springer, Berlin, pp 7–38

    Google Scholar 

  130. Bowman D, Mattes B (2005) Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154(1):29–32

    Article  Google Scholar 

  131. Pomfret SJ et al (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 41(6):2265–2269

    Article  Google Scholar 

  132. Pomfret SJ et al (1998) Inherently electrically conductive fibers wet spun from a sulfonic acid–doped polyaniline solution. Adv Mater 10(16):1351–1353

    Article  Google Scholar 

  133. Mottaghitalab V, Spinks GM, Wallace GG (2005) The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synth Met 152(1):77–80

    Article  Google Scholar 

  134. Okuzaki H, Ishihara M (2003) Spinning and characterization of conducting microfibers. Macromol Rapid Commun 24(3):261–264

    Article  Google Scholar 

  135. Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45(1):256–261

    Article  Google Scholar 

  136. Jalili R et al (2011) One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21(17):3363–3370

    Article  Google Scholar 

  137. Lima MD et al (2011) Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013):51–55

    Article  Google Scholar 

  138. Fang S et al (2012) Fabrication of biscrolled fiber using carbon nanotube sheet. US Patent No 8,968,756. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  139. Jost K et al (2014) Natural fiber welded electrode yarns for knittable textile supercapacitors. Adv Energy Mater 5(4):1–8

    Google Scholar 

  140. Haverhals LM et al (2010) Natural fiber welding. Macromol Mater Eng 295(5):425–430

    Article  Google Scholar 

  141. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  Google Scholar 

  142. Yan J et al (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4(4):1-43

    Google Scholar 

  143. Yu G et al (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2(2):213–234

    Article  Google Scholar 

  144. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  Google Scholar 

  145. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  Google Scholar 

  146. Zhu Y et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    Article  Google Scholar 

  147. Cottineau T et al (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82(4):599–606

    Article  Google Scholar 

  148. Deng W et al (2011) Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv 1(7):1171–1178

    Article  Google Scholar 

  149. Lang X et al (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236

    Article  Google Scholar 

  150. Dubal D et al (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790

    Article  Google Scholar 

  151. Qu Q et al (2012) Core–shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater 2(8):950–955

    Article  Google Scholar 

  152. Zhang K et al (2015) Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. J Mater Chem A 3(2):617–623

    Article  Google Scholar 

  153. Hu L et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714

    Article  Google Scholar 

  154. Huang Y et al (2015) High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co3O4/MnO2 hybrid electrodes. RSC Adv 5(24):18952–18959

    Article  Google Scholar 

  155. Jiang Y et al (2015) Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high-performance electrochemical capacitors. Electrochim Acta 153:246–253

    Article  Google Scholar 

  156. Zhang Z et al (2015) Superelastic supercapacitors with high performances during stretching. Adv Mater 27(2):356–362

    Article  Google Scholar 

  157. Dong L et al (2015) High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. J Mater Chem A 3(8):4729–4737

    Article  Google Scholar 

  158. Shown I et al (2015) Conducting polymer‐based flexible supercapacitor. Energy Sci Eng 3(1):2–26

    Article  Google Scholar 

  159. Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. J Electrochem Soc 17(1):34–37

    Google Scholar 

  160. Shirakawa H, McDiarmid A, Heeger A (2003) Twenty-five years of conducting polymers. Chem Commun 2003(1):1–4

    Article  Google Scholar 

  161. Novák P et al (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–282

    Article  Google Scholar 

  162. Li FS et al (2015) A mechanically robust and highly ion‐conductive polymer‐blend coating for high‐power and long‐life lithium‐ion battery anodes. Adv Mater 27(1):130–137

    Article  Google Scholar 

  163. Peng C et al (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18(7):777–788

    Article  Google Scholar 

  164. Li H et al (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190(2):578–586

    Article  Google Scholar 

  165. Chen W, Rakhi RB, Alshareef HN (2013) Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J Mater Chem A 1(10):3315–3324

    Article  Google Scholar 

  166. Fusalba F et al (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148(1):A1–A6

    Article  Google Scholar 

  167. Tan YT et al (2013) Synthesis and electrochemical properties of hollow polyaniline microspheres by a sulfonated polystyrene template. J Appl Polym Sci 127(3):1544–1549

    Article  Google Scholar 

  168. Lu YF et al (2007) Direct electrochemistry and bioelectrocatalysis of myoglobin at a carbon nanotube-modified electrode. Acta Phys Chim Sin 23(1):5–11

    Article  Google Scholar 

  169. Yang H-S, Zhou X, Zhang Q (2005) Electrochemical performances of supercapacitor with polyaniline particles with hierarchy as active electrode material. Acta Phys Chim Sin 21(04):414–418

    Google Scholar 

  170. Xiong SX et al (2012) Covalently bonded polyaniline/fullerene hybrids with coral-like morphology for high-performance supercapacitor. Electrochim Acta 85:235–242

    Article  Google Scholar 

  171. Gupta V, Miura N (2005) Electrochemically deposited polyaniline nanowire’s network – a high-performance electrode material for redox supercapacitor. Electrochem Solid State Lett 8(12):A630–A632

    Article  Google Scholar 

  172. Wang K, Huang JY, Wei ZX (2010) Conducting polyaniline nanowire arrays for high performance supercapacitors. J Phys Chem C 114(17):8062–8067

    Article  Google Scholar 

  173. Kim BC et al (2010) Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber. Synth Met 160(1–2):94–98

    Article  Google Scholar 

  174. Sharma R, Rastogi A, Desu S (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem Commun 10(2):268–272

    Article  Google Scholar 

  175. Zhang D et al (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196(14):5990–5996

    Article  Google Scholar 

  176. Ingram MD, Staesche H, Ryder KS (2004) ‘Activated’ polypyrrole electrodes for high-power supercapacitor applications. Solid State Ion 169(1):51–57

    Article  Google Scholar 

  177. Yuan L et al (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6(2):470–476

    Article  Google Scholar 

  178. Yue B et al (2013) Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor. Electrochim Acta 113:17–22

    Article  Google Scholar 

  179. Huang Y et al (2015) Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11:518–525

    Article  Google Scholar 

  180. Firoz Babu K, Siva Subramanian SP, Anbu Kulandainathan M (2013) Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohydr Polym 94(1):487–495

    Article  Google Scholar 

  181. Carlberg J, Inganäs O (1997) Poly (3, 4‐ethylenedioxythiophene) as electrode material in electrochemical capacitors. J Electrochem Soc 144(4):L61–L64

    Article  Google Scholar 

  182. Ryu KS et al (2004) Poly (ethylenedioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor. Electrochim Acta 50(2):843–847

    Article  Google Scholar 

  183. Stenger-Smith JD et al (2002) Poly (3, 4-alkylenedioxythiophene)-based supercapacitors using ionic liquids as supporting electrolytes. J Electrochem Soc 149(8):A973–A977

    Article  Google Scholar 

  184. Alvi F et al (2011) Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim Acta 56(25):9406–9412

    Article  Google Scholar 

  185. Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  Google Scholar 

  186. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  Google Scholar 

  187. Liu C et al (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868

    Article  Google Scholar 

  188. Yan J et al (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2):487–493

    Article  Google Scholar 

  189. Yan J et al (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195(9):3041–3045

    Article  Google Scholar 

  190. Xu Y et al (2013) Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv Energy Mater 3(8):1035–1040

    Article  Google Scholar 

  191. Fan T et al (2015) Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. Synth Met 199:79–86

    Article  Google Scholar 

  192. Pan S et al (2014) Novel wearable energy devices based on aligned carbon nanotube fiber textiles. Adv Energy Mater 5(4):1–8

    Google Scholar 

  193. Peng H (2015) Fiber-shaped energy harvesting and storage devices. Springer, Berlin

    Book  Google Scholar 

  194. Wang K et al (2013) High‐performance two‐ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25(10):1494–1498

    Article  Google Scholar 

  195. Lu W et al (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297(5583):983–987

    Article  Google Scholar 

  196. Meunier L et al (2011) Flexible displays for smart clothing: Part II-Electrochromic displays. Indian J Fibre Textile Res 36(4):429

    Google Scholar 

  197. Chen X et al (2014) Electrochromic fiber‐shaped supercapacitors. Adv Mater 26(48):8126–8132

    Article  Google Scholar 

  198. Huang Y et al (2015) From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano. doi:10.1021/acsnano.5b00860

    Google Scholar 

  199. Lee MR et al (2009) Solar power wires based on organic photovoltaic materials. Science 324(5924):232–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Salam Hamdy Makhlouf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abu-Thabit, N.Y., Makhlouf, A.S.H. (2016). Smart Textile Supercapacitors Coated with Conducting Polymers for Energy Storage Applications. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_21

Download citation

Publish with us

Policies and ethics