Skip to main content

Smart Coatings for Corrosion Protection

  • Chapter
  • First Online:
Industrial Applications for Intelligent Polymers and Coatings

Abstract

The investigation of coatings that can be used to reduce corrosion rates is mandatory because the degradation of metallic structures engenders severe economic, environmental, and social consequences. The primary action of most typical corrosion protection coatings occurs as a result of barrier properties or inhibitive process that is carried out by a corrosion inhibitor incorporated into the coating. Nevertheless, these coatings offer protection over a limited time. Thus, smart coatings have been investigated in the recent years, which possess an active component that releases with an environmental stimulus, for example, corrosion inhibitors to compensate the coating damage. This technology extends the lifetime of coatings. Different attempts have been made to produce coatings with self-healing properties, which allow the inhibitor or healing agent to be released on demand at the coating/metal surface. The most important triggers reported for releasing these agents are local pH gradients, mechanical damage, and ion-exchange processes, all of which are reviewed in the present chapter. Despite numerous researches in this field, the production of smart coatings for corrosion protection on an industrial scale remains a challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bard AJ, Stratmann M, Frankel GS (2006) Encyclopedia of electrochemistry: corrosion and oxide films, 5th edn. Wiley VCH, Weinheim

    Google Scholar 

  2. Brett CMA, Breet AMO (1993) Electrochemistry principles, methods and applications, 1st edn. Oxford University Press, New York, NY

    Google Scholar 

  3. Buchheit RG, Grant RP, Hlava PF, Mckenzie B, Zender GL (1997) J Electrochem Soc 144:2621–2628

    Article  Google Scholar 

  4. Ilevbare GO, Schneider O, Kelly RG, Scully JR (2004) J Electrochem Soc 151:B453–B464

    Article  Google Scholar 

  5. Schmutz P, Frankel GS (1998) J Electrochem Soc 145:2296–2306

    Google Scholar 

  6. Hughes AE, Boag A, Glenn AM, McCulloch D, Muster TH, Ryan C, Luo C, Zhou X, Thompson GE (2011) Corros Sci 53:27–39

    Article  Google Scholar 

  7. Glenn AM, Muster TH, Luo C, Zhou X, Thompson GE (2011) Corros Sci 53:40–50

    Article  Google Scholar 

  8. Hays GF (2013) Now is the time. World Corrosion Organisation. http://www.corrosion.org/. Accessed 2 Apr 2015

  9. Bierwagen G (2008) J Coat Technol Res 5:133–155

    Article  Google Scholar 

  10. Campestrini P, Terryn H, Hovestad A, de Wit JHW (2004) Surf Coat Technol 176:365–381

    Article  Google Scholar 

  11. Maege I, Jaehne E, Henke A, Adler H-JP, Bram C, Jung C, Stratmann M (1998) Prog Org Coat 34:1–12

    Article  Google Scholar 

  12. Rizzi M, Trueba M, Trasatti SP (2011) Synth Met 161:23–31

    Article  Google Scholar 

  13. Dalmoro V, dos Santos JHZ, Alemán C, Azambuja DS (2015) Corros Sci 92:200–208

    Article  Google Scholar 

  14. Van Schaftinghen T, Le Pen C, Terryn H, Hörzenberger F (2004) Electrochim Acta 49:2997–3004

    Article  Google Scholar 

  15. Wang D, Bierwagen GP (2009) Prog Org Coat 64:327–338

    Article  Google Scholar 

  16. Dalmoro V, dos Santos JHZ, Armelin E, Alemán C, Azambuja DS (2014) J Colloid Interface Sci 426:308–313

    Article  Google Scholar 

  17. Zhu D, van Ooij WJ (2004) Electrochim Acta 49:1113–1125

    Article  Google Scholar 

  18. Naderi R, Fedel M, Deflorian F, Poelman M, Olivier M (2013) Surf Coat Technol 224:93–100

    Article  Google Scholar 

  19. Dalmoro V, dos Santos JHZ, Armelin E, Aleman C, Azambuja DS (2012) Corros Sci 60:173–180

    Article  Google Scholar 

  20. Poznyak SK, Tedim J, Rodrigues LM, Salak AN, Zheludkevich ML, Dick LFP, Ferreira MGS (2009) ACS Appl Mater Interfaces 1:2353–2362

    Article  Google Scholar 

  21. Zheludkevich ML, Tedim J, Ferreira MGS (2012) Electrochim Acta 82:314–323

    Article  Google Scholar 

  22. Wei H, Wang Y, Guo J, Shen NZ, Jiang D, Zhang X, Yan X, Zhu J, Wang Q, Shao L, Lin H, Wei S, Guo Z (2015) J Mater Chem A 3:469–480

    Article  Google Scholar 

  23. Tamborim SM, Maisonnave APZ, Azambuja DS, Englert GE (2008) Surf Coat Technol 202:5991–6001

    Article  Google Scholar 

  24. Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Salvado IMM, Ferreira MGS (2005) Electrochim Acta 51:208–217

    Article  Google Scholar 

  25. Truc TA, Hang TTX, Oanh VK, Dantras E, Lacabanne C, Oquab D, Pébère N (2008) Surf Coat Technol 202:4945–4951

    Article  Google Scholar 

  26. Montemor MF (2014) Surf Coat Technol 258:17–37

    Article  Google Scholar 

  27. Murphy EB, Wudl F (2010) Prog Polym Sci 35:223–251

    Article  Google Scholar 

  28. García SJ, Fischer HR, van der Zwaag S (2011) Prog Org Coat 72:211–221

    Article  Google Scholar 

  29. Luo X, Mather PT (2013) ACS Macro Lett 2:152–156

    Article  Google Scholar 

  30. Samadzadeh M, Hatami Boura S, Peikari M, Kasiriha SM, Ashrafi A (2010) Prog Org Coat 68:159–164

    Article  Google Scholar 

  31. Andreeva DV, Shchukin DG (2008) Mater Today 11:24–30

    Article  Google Scholar 

  32. Shchukin DG (2013) Polym Chem 4:4871–4877

    Article  Google Scholar 

  33. Yang Z, Wei Z, Le-Ping L, Si-Jie W, Wu-Jun L (2012) Appl Surf Sci 258:1915–1918

    Article  Google Scholar 

  34. Zhang Z, Hu Y, Liu Z, Guo T (2012) Polymer 53:2979–2990

    Article  Google Scholar 

  35. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794–797

    Article  Google Scholar 

  36. Hatami Boura S, Peikari M, Ashrafi A, Samadzadeh M (2012) Prog Org Coat 75:292–300

    Article  Google Scholar 

  37. García SJ, Fischer HR, White PA, Mardeld J, González-García Y, Mole JMC, Hughes AE (2011) Prog Org Coat 70:142–149

    Article  Google Scholar 

  38. Samadzadeh M, Hatami Boura S, Peikari M, Ashrafi A, Kasiriha M (2011) Prog Org Coat 70:383–387

    Article  Google Scholar 

  39. Nesterova T, Dam-Johansen K, Pedersen LT, Kiil S (2012) Prog Org Coat 75:309–318

    Article  Google Scholar 

  40. Selvakumar N, Jeyasubramanian K, Sharmila R (2012) Prog Org Coat 74:461–469

    Article  Google Scholar 

  41. Nesterova T, Dam-Johansen K, Kiil S (2011) Prog Org Coat 70:342–352

    Article  Google Scholar 

  42. Liu J, Zhang Y, Yu M, Li S, Xue B, Yin X (2015) Prog Org Coat 81:93–100

    Article  Google Scholar 

  43. Xuan Hang TT, Truc TA, Duong NT, Pébère N, Olivier M-G (2012) Prog Org Coat 74:343–348

    Article  Google Scholar 

  44. Salak AN, Tedim J, Kuznetsova AI, Vieira LG, Ribeiro JL, Zheludkevich ML, Ferreira MGS (2013) J Phys Chem C 117:4152–4157

    Article  Google Scholar 

  45. Williams G, McMurray HN (2003) Electrochem Solid State Lett 6:B9–B11

    Article  Google Scholar 

  46. Posati T, Costantino F, Latterini L, Nocchetti M, Paolantoni M, Tarpani L (2012) Inorg Chem 51:13229–13236

    Article  Google Scholar 

  47. Stimpfling T, Leroux F, Hintze-Bruening H (2013) Appl Clay Sci 83–84:32–41

    Article  Google Scholar 

  48. Zheludkevich ML, Poznyak SK, Rodrigues LM, Raps D, Hack T, Dick LF, Nunes T, Ferreira MGS (2010) Corros Sci 52:602–611

    Article  Google Scholar 

  49. Stimpfling T, Leroux F, Hintze-Bruenin H (2014) Colloids Surf A 458:147–154

    Article  Google Scholar 

  50. Yu X, Wang J, Zhang M, Yang L, Li J, Yang P, Cao D (2008) Surf Coat Technol 203:250–255

    Article  Google Scholar 

  51. Tedim J, Kuznetsova A, Salak AN, Montemor F, Snihirova D, Pilz M, Zheludkevich ML, Ferreira MGS (2012) Corros Sci 55:1–4

    Article  Google Scholar 

  52. Li D, Wang F, Yu X, Wang J, Liu Q, Yang P, He Y, Wang Y, Zhang M (2011) Prog Org Coat 71:302–309

    Article  Google Scholar 

  53. Wang H, Presuel F, Kelly RG (2004) Electrochim Acta 49:239–255

    Article  Google Scholar 

  54. Williams G, McMurray HN (2004) Electrochem Solid State Lett 7:B13–B15

    Article  Google Scholar 

  55. Dong Y, Wang F, Zhou Q (2014) J Coat Technol Res 11:793–803

    Article  Google Scholar 

  56. Wong F, Buchheit RG (2004) Prog Org Coat 51:91–102

    Article  Google Scholar 

  57. Zeng R-C, Liu Z-G, Zhang F, Li S-Q, Cui H-Z, Han E-H (2014) J Mater Chem A 2:13049–13057

    Article  Google Scholar 

  58. Chen J, Song Y, Shan D, Han E-H (2013) Corros Sci 74:130–138

    Article  Google Scholar 

  59. Chen J, Song Y, Shan D, Han E-H (2012) Corros Sci 65:268–277

    Article  Google Scholar 

  60. Williams G, McMurray HN, Loveridge MJ (2010) Electrochim Acta 55:1740–1748

    Article  Google Scholar 

  61. Motte C, Poelman M, Roobroeck A, Fedel M, Deflorian F (2012) Prog Org Coat 74:326–333

    Article  Google Scholar 

  62. Hang TTX, Truc TA, Nam TH, Oanh VK, Jorcin J-B, Pébère N (2007) Surf Coat Technol 201:7408–7415

    Article  Google Scholar 

  63. Hang TTX, Truc TA, Olivier M-G, Vandermiers C, Guerit N, Pebere Prog N (2010) Org Coat 69:410–416

    Article  Google Scholar 

  64. Bohm S, McMurray HN, Powell SM, Worsley DA (2001) Mater Corros 52:896–903

    Article  Google Scholar 

  65. McMurray HN, Williams D, Williams G, Worsley D (2003) Corros Eng Sci Technol 38:112–118

    Article  Google Scholar 

  66. Deyá C, Romagnoli R, del Amo B (2007) J Coat Technol Res 4:167–175

    Article  Google Scholar 

  67. Deyá MC, del Amo B, Spinelli E, Romagnoli R (2013) Prog Org Coat 6:525–532

    Article  Google Scholar 

  68. Pokhmurskii VI, Zin IM, Bily LM, Vynar VA, Zin YI (2013) Surf Interface Anal 45:1474–1478

    Article  Google Scholar 

  69. Dias SAS, Lamaka SV, Nogueira CA, Diamantino TC, Ferreira MGS (2012) Corros Sci 62:153–162

    Article  Google Scholar 

  70. Dias SAS, Marques A, Lamaka SV, Simões A, Diamantino TC, Ferreira MGS (2013) Electrochim Acta 112:549–556

    Article  Google Scholar 

  71. Schoonheydt RA, Geerlings P, Pidko EA, van Santen RA (2012) J Mater Chem 22:18705–18717

    Article  Google Scholar 

  72. Kang Y, Emdadi L, Lee MJ, Liu D, Mi B (2014) Environ Sci Technol Lett 1:504–509

    Article  Google Scholar 

  73. Shiratori SS, Rubner MF (2000) Macromolecules 33:4213–4219

    Article  Google Scholar 

  74. Skorb EV, Fix D, Andreeva DV, Möhwald H, Shchukin DG (2009) Adv Funct Mater 19:2373–2379

    Article  Google Scholar 

  75. Zheludkevich ML, Shchukin DG, Yasakau KA, Möhwald H, Ferreira MGS (2007) Chem Mater 19:402–411

    Article  Google Scholar 

  76. Shchukin DG, Zheludkevich M, Yasakau K, Lamaka S, Ferreira MGS, Möhwald H (2006) Adv Mater 18:1672–1678

    Article  Google Scholar 

  77. DeLongchamp DM, Hammond PT (2003) Chem Mater 15:1165–1173

    Article  Google Scholar 

  78. Shchukin DG, Möhwald H (2007) Adv Funct Mater 17:1451–1458

    Article  Google Scholar 

  79. Lvov YM, Shchukin DG, Möhwald H, Price RR (2008) ACS Nano 2:814–820

    Article  Google Scholar 

  80. Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Ferreira MGS, Möhwald H (2008) J Phys Chem C 112:958–964

    Article  Google Scholar 

  81. Snihirova D, Lamaka SV, Cardoso MM, Condeço JAD, Ferreira HECS, Montemor MF (2014) Electrochim Acta 145:123–131

    Article  Google Scholar 

  82. Lamaka SV, Shchukin DG, Andreeva DV, Zheludkevich ML, Möhwald H, Ferreira MGS (2008) Adv Funct Mater 18:3137–3147

    Article  Google Scholar 

  83. Andreeva DV, Skorb EV, Shchukin DG (2010) ACS Appl Mater Interfaces 2:1954–1962

    Article  Google Scholar 

  84. Choi H, Song YK, Kim KY, Park JM (2012) Surf Coat Technol 206:2354–2362

    Article  Google Scholar 

  85. Snihirova D, Lamaka SV, Taryba M, Salak AN, Kallip S, Zheludkevich ML, Ferreira MGS, Montemor MF (2010) ACS Appl Mater Interfaces 2:3011–3022

    Article  Google Scholar 

  86. Fix D, Andreeva DV, Lvov YM, Shchukin DG, Möhwald H (2009) Adv Funct Mater 19:1720–1727

    Article  Google Scholar 

  87. Wang MD, Liu MY, Fu JJ (2015) J Mater Chem A 3:6423–6431

    Article  Google Scholar 

  88. Fu JJ, Chen T, Wang MD, Yang NW, Li SN, Wang Y, Liu XD (2013) ACS Nano 7:11397–11408

    Article  Google Scholar 

  89. Yabuki A, Sakai M (2011) Corros Sci 53:829–833

    Article  Google Scholar 

  90. Snihirova D, Lamaka SV, Montemor MF (2012) Electrochim Acta 83:439–447

    Article  Google Scholar 

  91. Arefinia R, Shojaei A, Shariatpanahi H, Neshati J (2012) Prog Org Coat 75:502–508

    Article  Google Scholar 

  92. Kendig M, Hon M, Warren L (2003) Prog Org Coat 47:183–189

    Article  Google Scholar 

  93. Skorb EV, Skirtach AG, Sviridov DV, Shchukin DG, Möhwald H (2009) ACS Nano 3:1753–1760

    Article  Google Scholar 

  94. Kartsonakis I, Daniilidis I, Kordas G (2008) J Sol-Gel Sci Technol 48:24–31

    Article  Google Scholar 

  95. Mekeridis ED, Kartsonakis IA, Pappas GS, Kordas GC (2011) J Nanopart Res 13:541–554

    Article  Google Scholar 

  96. Kartsonakis IA, Kordas G (2010) J Am Ceram Soc 93:65–73

    Article  Google Scholar 

  97. Lamaka SV, Zheludkevich ML, Yasakau KA, Serra R, Poznyak SK, Ferreira MGS (2007) Prog Org Coat 58:127–135

    Article  Google Scholar 

  98. Khramov AN, Voevodin NN, Balbyshev VN, Donley MS (2004) Thin Solid Films 447–448:549–557

    Article  Google Scholar 

  99. Khramov AN, Voevodin NN, Balbyshev VN, Mantz RA (2005) Thin Solid Films 483:191–196

    Article  Google Scholar 

  100. Zhang J, Frankel GS (1999) Corrosion 55:957–967

    Article  Google Scholar 

  101. Maia F, Tedim J, Bastos AC, Ferreira MGS, Zheludkevich ML (2014) RSC Adv 4:17780–17786

    Article  Google Scholar 

  102. Augustyniak A, Ming W (2011) Prog Org Coat 71:406–412

    Article  Google Scholar 

  103. Augustyniak A, Tsavalas J, Ming W (2009) ACS Appl Mater Interfaces 1:2618–2623

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henrique Zimnoch dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dalmoro, V., Santos, C., dos Santos, J.H.Z. (2016). Smart Coatings for Corrosion Protection. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_20

Download citation

Publish with us

Policies and ethics