Smart Coatings for Corrosion Protection

  • V. Dalmoro
  • C. Santos
  • João Henrique Zimnoch dos SantosEmail author


The investigation of coatings that can be used to reduce corrosion rates is mandatory because the degradation of metallic structures engenders severe economic, environmental, and social consequences. The primary action of most typical corrosion protection coatings occurs as a result of barrier properties or inhibitive process that is carried out by a corrosion inhibitor incorporated into the coating. Nevertheless, these coatings offer protection over a limited time. Thus, smart coatings have been investigated in the recent years, which possess an active component that releases with an environmental stimulus, for example, corrosion inhibitors to compensate the coating damage. This technology extends the lifetime of coatings. Different attempts have been made to produce coatings with self-healing properties, which allow the inhibitor or healing agent to be released on demand at the coating/metal surface. The most important triggers reported for releasing these agents are local pH gradients, mechanical damage, and ion-exchange processes, all of which are reviewed in the present chapter. Despite numerous researches in this field, the production of smart coatings for corrosion protection on an industrial scale remains a challenge.


Self-healing Corrosion inhibitors Local action 


  1. 1.
    Bard AJ, Stratmann M, Frankel GS (2006) Encyclopedia of electrochemistry: corrosion and oxide films, 5th edn. Wiley VCH, WeinheimGoogle Scholar
  2. 2.
    Brett CMA, Breet AMO (1993) Electrochemistry principles, methods and applications, 1st edn. Oxford University Press, New York, NYGoogle Scholar
  3. 3.
    Buchheit RG, Grant RP, Hlava PF, Mckenzie B, Zender GL (1997) J Electrochem Soc 144:2621–2628CrossRefGoogle Scholar
  4. 4.
    Ilevbare GO, Schneider O, Kelly RG, Scully JR (2004) J Electrochem Soc 151:B453–B464CrossRefGoogle Scholar
  5. 5.
    Schmutz P, Frankel GS (1998) J Electrochem Soc 145:2296–2306Google Scholar
  6. 6.
    Hughes AE, Boag A, Glenn AM, McCulloch D, Muster TH, Ryan C, Luo C, Zhou X, Thompson GE (2011) Corros Sci 53:27–39CrossRefGoogle Scholar
  7. 7.
    Glenn AM, Muster TH, Luo C, Zhou X, Thompson GE (2011) Corros Sci 53:40–50CrossRefGoogle Scholar
  8. 8.
    Hays GF (2013) Now is the time. World Corrosion Organisation. Accessed 2 Apr 2015
  9. 9.
    Bierwagen G (2008) J Coat Technol Res 5:133–155CrossRefGoogle Scholar
  10. 10.
    Campestrini P, Terryn H, Hovestad A, de Wit JHW (2004) Surf Coat Technol 176:365–381CrossRefGoogle Scholar
  11. 11.
    Maege I, Jaehne E, Henke A, Adler H-JP, Bram C, Jung C, Stratmann M (1998) Prog Org Coat 34:1–12CrossRefGoogle Scholar
  12. 12.
    Rizzi M, Trueba M, Trasatti SP (2011) Synth Met 161:23–31CrossRefGoogle Scholar
  13. 13.
    Dalmoro V, dos Santos JHZ, Alemán C, Azambuja DS (2015) Corros Sci 92:200–208CrossRefGoogle Scholar
  14. 14.
    Van Schaftinghen T, Le Pen C, Terryn H, Hörzenberger F (2004) Electrochim Acta 49:2997–3004CrossRefGoogle Scholar
  15. 15.
    Wang D, Bierwagen GP (2009) Prog Org Coat 64:327–338CrossRefGoogle Scholar
  16. 16.
    Dalmoro V, dos Santos JHZ, Armelin E, Alemán C, Azambuja DS (2014) J Colloid Interface Sci 426:308–313CrossRefGoogle Scholar
  17. 17.
    Zhu D, van Ooij WJ (2004) Electrochim Acta 49:1113–1125CrossRefGoogle Scholar
  18. 18.
    Naderi R, Fedel M, Deflorian F, Poelman M, Olivier M (2013) Surf Coat Technol 224:93–100CrossRefGoogle Scholar
  19. 19.
    Dalmoro V, dos Santos JHZ, Armelin E, Aleman C, Azambuja DS (2012) Corros Sci 60:173–180CrossRefGoogle Scholar
  20. 20.
    Poznyak SK, Tedim J, Rodrigues LM, Salak AN, Zheludkevich ML, Dick LFP, Ferreira MGS (2009) ACS Appl Mater Interfaces 1:2353–2362CrossRefGoogle Scholar
  21. 21.
    Zheludkevich ML, Tedim J, Ferreira MGS (2012) Electrochim Acta 82:314–323CrossRefGoogle Scholar
  22. 22.
    Wei H, Wang Y, Guo J, Shen NZ, Jiang D, Zhang X, Yan X, Zhu J, Wang Q, Shao L, Lin H, Wei S, Guo Z (2015) J Mater Chem A 3:469–480CrossRefGoogle Scholar
  23. 23.
    Tamborim SM, Maisonnave APZ, Azambuja DS, Englert GE (2008) Surf Coat Technol 202:5991–6001CrossRefGoogle Scholar
  24. 24.
    Zheludkevich ML, Serra R, Montemor MF, Yasakau KA, Salvado IMM, Ferreira MGS (2005) Electrochim Acta 51:208–217CrossRefGoogle Scholar
  25. 25.
    Truc TA, Hang TTX, Oanh VK, Dantras E, Lacabanne C, Oquab D, Pébère N (2008) Surf Coat Technol 202:4945–4951CrossRefGoogle Scholar
  26. 26.
    Montemor MF (2014) Surf Coat Technol 258:17–37CrossRefGoogle Scholar
  27. 27.
    Murphy EB, Wudl F (2010) Prog Polym Sci 35:223–251CrossRefGoogle Scholar
  28. 28.
    García SJ, Fischer HR, van der Zwaag S (2011) Prog Org Coat 72:211–221CrossRefGoogle Scholar
  29. 29.
    Luo X, Mather PT (2013) ACS Macro Lett 2:152–156CrossRefGoogle Scholar
  30. 30.
    Samadzadeh M, Hatami Boura S, Peikari M, Kasiriha SM, Ashrafi A (2010) Prog Org Coat 68:159–164CrossRefGoogle Scholar
  31. 31.
    Andreeva DV, Shchukin DG (2008) Mater Today 11:24–30CrossRefGoogle Scholar
  32. 32.
    Shchukin DG (2013) Polym Chem 4:4871–4877CrossRefGoogle Scholar
  33. 33.
    Yang Z, Wei Z, Le-Ping L, Si-Jie W, Wu-Jun L (2012) Appl Surf Sci 258:1915–1918CrossRefGoogle Scholar
  34. 34.
    Zhang Z, Hu Y, Liu Z, Guo T (2012) Polymer 53:2979–2990CrossRefGoogle Scholar
  35. 35.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794–797CrossRefGoogle Scholar
  36. 36.
    Hatami Boura S, Peikari M, Ashrafi A, Samadzadeh M (2012) Prog Org Coat 75:292–300CrossRefGoogle Scholar
  37. 37.
    García SJ, Fischer HR, White PA, Mardeld J, González-García Y, Mole JMC, Hughes AE (2011) Prog Org Coat 70:142–149CrossRefGoogle Scholar
  38. 38.
    Samadzadeh M, Hatami Boura S, Peikari M, Ashrafi A, Kasiriha M (2011) Prog Org Coat 70:383–387CrossRefGoogle Scholar
  39. 39.
    Nesterova T, Dam-Johansen K, Pedersen LT, Kiil S (2012) Prog Org Coat 75:309–318CrossRefGoogle Scholar
  40. 40.
    Selvakumar N, Jeyasubramanian K, Sharmila R (2012) Prog Org Coat 74:461–469CrossRefGoogle Scholar
  41. 41.
    Nesterova T, Dam-Johansen K, Kiil S (2011) Prog Org Coat 70:342–352CrossRefGoogle Scholar
  42. 42.
    Liu J, Zhang Y, Yu M, Li S, Xue B, Yin X (2015) Prog Org Coat 81:93–100CrossRefGoogle Scholar
  43. 43.
    Xuan Hang TT, Truc TA, Duong NT, Pébère N, Olivier M-G (2012) Prog Org Coat 74:343–348CrossRefGoogle Scholar
  44. 44.
    Salak AN, Tedim J, Kuznetsova AI, Vieira LG, Ribeiro JL, Zheludkevich ML, Ferreira MGS (2013) J Phys Chem C 117:4152–4157CrossRefGoogle Scholar
  45. 45.
    Williams G, McMurray HN (2003) Electrochem Solid State Lett 6:B9–B11CrossRefGoogle Scholar
  46. 46.
    Posati T, Costantino F, Latterini L, Nocchetti M, Paolantoni M, Tarpani L (2012) Inorg Chem 51:13229–13236CrossRefGoogle Scholar
  47. 47.
    Stimpfling T, Leroux F, Hintze-Bruening H (2013) Appl Clay Sci 83–84:32–41CrossRefGoogle Scholar
  48. 48.
    Zheludkevich ML, Poznyak SK, Rodrigues LM, Raps D, Hack T, Dick LF, Nunes T, Ferreira MGS (2010) Corros Sci 52:602–611CrossRefGoogle Scholar
  49. 49.
    Stimpfling T, Leroux F, Hintze-Bruenin H (2014) Colloids Surf A 458:147–154CrossRefGoogle Scholar
  50. 50.
    Yu X, Wang J, Zhang M, Yang L, Li J, Yang P, Cao D (2008) Surf Coat Technol 203:250–255CrossRefGoogle Scholar
  51. 51.
    Tedim J, Kuznetsova A, Salak AN, Montemor F, Snihirova D, Pilz M, Zheludkevich ML, Ferreira MGS (2012) Corros Sci 55:1–4CrossRefGoogle Scholar
  52. 52.
    Li D, Wang F, Yu X, Wang J, Liu Q, Yang P, He Y, Wang Y, Zhang M (2011) Prog Org Coat 71:302–309CrossRefGoogle Scholar
  53. 53.
    Wang H, Presuel F, Kelly RG (2004) Electrochim Acta 49:239–255CrossRefGoogle Scholar
  54. 54.
    Williams G, McMurray HN (2004) Electrochem Solid State Lett 7:B13–B15CrossRefGoogle Scholar
  55. 55.
    Dong Y, Wang F, Zhou Q (2014) J Coat Technol Res 11:793–803CrossRefGoogle Scholar
  56. 56.
    Wong F, Buchheit RG (2004) Prog Org Coat 51:91–102CrossRefGoogle Scholar
  57. 57.
    Zeng R-C, Liu Z-G, Zhang F, Li S-Q, Cui H-Z, Han E-H (2014) J Mater Chem A 2:13049–13057CrossRefGoogle Scholar
  58. 58.
    Chen J, Song Y, Shan D, Han E-H (2013) Corros Sci 74:130–138CrossRefGoogle Scholar
  59. 59.
    Chen J, Song Y, Shan D, Han E-H (2012) Corros Sci 65:268–277CrossRefGoogle Scholar
  60. 60.
    Williams G, McMurray HN, Loveridge MJ (2010) Electrochim Acta 55:1740–1748CrossRefGoogle Scholar
  61. 61.
    Motte C, Poelman M, Roobroeck A, Fedel M, Deflorian F (2012) Prog Org Coat 74:326–333CrossRefGoogle Scholar
  62. 62.
    Hang TTX, Truc TA, Nam TH, Oanh VK, Jorcin J-B, Pébère N (2007) Surf Coat Technol 201:7408–7415CrossRefGoogle Scholar
  63. 63.
    Hang TTX, Truc TA, Olivier M-G, Vandermiers C, Guerit N, Pebere Prog N (2010) Org Coat 69:410–416CrossRefGoogle Scholar
  64. 64.
    Bohm S, McMurray HN, Powell SM, Worsley DA (2001) Mater Corros 52:896–903CrossRefGoogle Scholar
  65. 65.
    McMurray HN, Williams D, Williams G, Worsley D (2003) Corros Eng Sci Technol 38:112–118CrossRefGoogle Scholar
  66. 66.
    Deyá C, Romagnoli R, del Amo B (2007) J Coat Technol Res 4:167–175CrossRefGoogle Scholar
  67. 67.
    Deyá MC, del Amo B, Spinelli E, Romagnoli R (2013) Prog Org Coat 6:525–532CrossRefGoogle Scholar
  68. 68.
    Pokhmurskii VI, Zin IM, Bily LM, Vynar VA, Zin YI (2013) Surf Interface Anal 45:1474–1478CrossRefGoogle Scholar
  69. 69.
    Dias SAS, Lamaka SV, Nogueira CA, Diamantino TC, Ferreira MGS (2012) Corros Sci 62:153–162CrossRefGoogle Scholar
  70. 70.
    Dias SAS, Marques A, Lamaka SV, Simões A, Diamantino TC, Ferreira MGS (2013) Electrochim Acta 112:549–556CrossRefGoogle Scholar
  71. 71.
    Schoonheydt RA, Geerlings P, Pidko EA, van Santen RA (2012) J Mater Chem 22:18705–18717CrossRefGoogle Scholar
  72. 72.
    Kang Y, Emdadi L, Lee MJ, Liu D, Mi B (2014) Environ Sci Technol Lett 1:504–509CrossRefGoogle Scholar
  73. 73.
    Shiratori SS, Rubner MF (2000) Macromolecules 33:4213–4219CrossRefGoogle Scholar
  74. 74.
    Skorb EV, Fix D, Andreeva DV, Möhwald H, Shchukin DG (2009) Adv Funct Mater 19:2373–2379CrossRefGoogle Scholar
  75. 75.
    Zheludkevich ML, Shchukin DG, Yasakau KA, Möhwald H, Ferreira MGS (2007) Chem Mater 19:402–411CrossRefGoogle Scholar
  76. 76.
    Shchukin DG, Zheludkevich M, Yasakau K, Lamaka S, Ferreira MGS, Möhwald H (2006) Adv Mater 18:1672–1678CrossRefGoogle Scholar
  77. 77.
    DeLongchamp DM, Hammond PT (2003) Chem Mater 15:1165–1173CrossRefGoogle Scholar
  78. 78.
    Shchukin DG, Möhwald H (2007) Adv Funct Mater 17:1451–1458CrossRefGoogle Scholar
  79. 79.
    Lvov YM, Shchukin DG, Möhwald H, Price RR (2008) ACS Nano 2:814–820CrossRefGoogle Scholar
  80. 80.
    Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Ferreira MGS, Möhwald H (2008) J Phys Chem C 112:958–964CrossRefGoogle Scholar
  81. 81.
    Snihirova D, Lamaka SV, Cardoso MM, Condeço JAD, Ferreira HECS, Montemor MF (2014) Electrochim Acta 145:123–131CrossRefGoogle Scholar
  82. 82.
    Lamaka SV, Shchukin DG, Andreeva DV, Zheludkevich ML, Möhwald H, Ferreira MGS (2008) Adv Funct Mater 18:3137–3147CrossRefGoogle Scholar
  83. 83.
    Andreeva DV, Skorb EV, Shchukin DG (2010) ACS Appl Mater Interfaces 2:1954–1962CrossRefGoogle Scholar
  84. 84.
    Choi H, Song YK, Kim KY, Park JM (2012) Surf Coat Technol 206:2354–2362CrossRefGoogle Scholar
  85. 85.
    Snihirova D, Lamaka SV, Taryba M, Salak AN, Kallip S, Zheludkevich ML, Ferreira MGS, Montemor MF (2010) ACS Appl Mater Interfaces 2:3011–3022CrossRefGoogle Scholar
  86. 86.
    Fix D, Andreeva DV, Lvov YM, Shchukin DG, Möhwald H (2009) Adv Funct Mater 19:1720–1727CrossRefGoogle Scholar
  87. 87.
    Wang MD, Liu MY, Fu JJ (2015) J Mater Chem A 3:6423–6431CrossRefGoogle Scholar
  88. 88.
    Fu JJ, Chen T, Wang MD, Yang NW, Li SN, Wang Y, Liu XD (2013) ACS Nano 7:11397–11408CrossRefGoogle Scholar
  89. 89.
    Yabuki A, Sakai M (2011) Corros Sci 53:829–833CrossRefGoogle Scholar
  90. 90.
    Snihirova D, Lamaka SV, Montemor MF (2012) Electrochim Acta 83:439–447CrossRefGoogle Scholar
  91. 91.
    Arefinia R, Shojaei A, Shariatpanahi H, Neshati J (2012) Prog Org Coat 75:502–508CrossRefGoogle Scholar
  92. 92.
    Kendig M, Hon M, Warren L (2003) Prog Org Coat 47:183–189CrossRefGoogle Scholar
  93. 93.
    Skorb EV, Skirtach AG, Sviridov DV, Shchukin DG, Möhwald H (2009) ACS Nano 3:1753–1760CrossRefGoogle Scholar
  94. 94.
    Kartsonakis I, Daniilidis I, Kordas G (2008) J Sol-Gel Sci Technol 48:24–31CrossRefGoogle Scholar
  95. 95.
    Mekeridis ED, Kartsonakis IA, Pappas GS, Kordas GC (2011) J Nanopart Res 13:541–554CrossRefGoogle Scholar
  96. 96.
    Kartsonakis IA, Kordas G (2010) J Am Ceram Soc 93:65–73CrossRefGoogle Scholar
  97. 97.
    Lamaka SV, Zheludkevich ML, Yasakau KA, Serra R, Poznyak SK, Ferreira MGS (2007) Prog Org Coat 58:127–135CrossRefGoogle Scholar
  98. 98.
    Khramov AN, Voevodin NN, Balbyshev VN, Donley MS (2004) Thin Solid Films 447–448:549–557CrossRefGoogle Scholar
  99. 99.
    Khramov AN, Voevodin NN, Balbyshev VN, Mantz RA (2005) Thin Solid Films 483:191–196CrossRefGoogle Scholar
  100. 100.
    Zhang J, Frankel GS (1999) Corrosion 55:957–967CrossRefGoogle Scholar
  101. 101.
    Maia F, Tedim J, Bastos AC, Ferreira MGS, Zheludkevich ML (2014) RSC Adv 4:17780–17786CrossRefGoogle Scholar
  102. 102.
    Augustyniak A, Ming W (2011) Prog Org Coat 71:406–412CrossRefGoogle Scholar
  103. 103.
    Augustyniak A, Tsavalas J, Ming W (2009) ACS Appl Mater Interfaces 1:2618–2623CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • V. Dalmoro
    • 1
  • C. Santos
    • 1
  • João Henrique Zimnoch dos Santos
    • 1
    Email author
  1. 1.Institute of ChemistryFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations