Stimuli-Responsive Smart Polymeric Coatings: An Overview

  • Saravanan Nagappan
  • Madhappan Santha Moorthy
  • Kummara Madhusudana Rao
  • Chang-Sik HaEmail author


Coatings are an important topic within the scientific community, spanning from the ancient to the modern world. Coatings are not only used for decorative purposes but also for functionality, for example, coatings that are resistant to the effects of weathering (i.e., rain, UV light, etc.). Up until present, several coating materials were developed using various types of natural and synthetic materials. The scientific improvements of the modern era have made it easy to create novel coating formulations by mimicking ancient pathways. Recently nonstick, self-cleaning, self-healing, and stimuli-responsive surfaces have attracted special interest in the formulation of smart coating materials. Several attempts were made to synthesize and develop highly efficient smart polymeric coatings from the practical point of view due to the increasing need for smart coatings in modern technologies and industrial applications. Stimuli-responsive smart coatings are also very useful in extending the life of final products, which is also a reason to develop a variety of new coating formulations for industrial purpose. On the other hand, the synthesis of stimuli-responsive smart coatings and maintaining the stability of the coated surfaces under major environmental changes were quite difficult, which necessitated careful selection and synthesis of the coating materials. The applicability of stable stimuli-responsive smart polymeric coating can be extended into various industrial and commercial applications. This chapter covers the stimuli responsiveness of smart polymeric coatings in various applications and their future outlooks within the coating industry as well as present practical applications and necessities of the stimuli-responsive smart polymeric coatings for other industrial applications.


Stimuli responsiveness Smart polymers Self-cleaning Antireflection Industrial applications 



This study was supported by the National Research Foundation of Korea (NRF) through the Ministry of Science, ICT and Future Planning, Korea [Pioneer Research Center Program (2010-0019308/2010-0019482), Acceleration Research Program (No. 2014R1A2A1A 11054584), and Brain Korea (BK) 21 Plus Program (21A2013800002)].


  1. 1.
    Nagappan S, Park JJ, Park SS, Lee WK, Ha CS (2013) J Mater Chem A 1:6761–6769CrossRefGoogle Scholar
  2. 2.
    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB (2010) Nat Mater 9:101–113CrossRefGoogle Scholar
  3. 3.
    Chen JK, Chang CJ (2014) Materials 7:805–875CrossRefGoogle Scholar
  4. 4.
    Mano JF (2008) Adv Eng Mater 10:515–527CrossRefGoogle Scholar
  5. 5.
    Uhlmann P, Lonov L, Houbenov N, Nitschke M, Grundke K, Motornov M, Minko S, Stamm M (2006) Prog Org Coat 55:168–174CrossRefGoogle Scholar
  6. 6.
    Nagappan S, Ha CS (2015) J Mater Chem A 3:3224–3251CrossRefGoogle Scholar
  7. 7.
    Motornov M, Roiter Y, Tokarev I, Minko S (2010) Prog Polym Sci 35:174–211CrossRefGoogle Scholar
  8. 8.
    Hoare T, Pelton R (2008) Biomacromolecules 9:733–740CrossRefGoogle Scholar
  9. 9.
    Lapeyre V, Ancla C, Catargi B, Ravaine V (2008) J Colloid Interface Sci 327:316–323CrossRefGoogle Scholar
  10. 10.
    Fu Q, Rao GVR, Ista LK, Wu Y, Andrzejewski BP, Sklar LA, Ward TL, Lόpez GP (2003) Adv Mater 15:1262–1266CrossRefGoogle Scholar
  11. 11.
    Minko S (2006) J Macromol Sci Part C Polym Rev 46:397–420CrossRefGoogle Scholar
  12. 12.
    Yang Y, Urban MW (2014) Angew Chem Int Ed 53:12142–12147CrossRefGoogle Scholar
  13. 13.
    Qu M, Meth JS, Blackman GS, Cohen GM, Sharp KG, Van Vliet KJ (2011) Soft Matter 7:8401–8408CrossRefGoogle Scholar
  14. 14.
    Fudouzi H, Xia Y (2003) Adv Mater 15:892–896CrossRefGoogle Scholar
  15. 15.
    Joo W, Kim HJ, Kim JK (2010) Langmuir 26:5110–5114CrossRefGoogle Scholar
  16. 16.
    Li X, Yu X, Han Y (2012) Langmuir 28:10584–10591CrossRefGoogle Scholar
  17. 17.
    Wang YW, Chen WC (2010) Compos Sci Technol 70:769–775CrossRefGoogle Scholar
  18. 18.
    Wang YW, Chen WC (2011) Mater Chem Phys 126:24–30CrossRefGoogle Scholar
  19. 19.
    Yu YY, Chien WC, Lin JM, Yu HH (2011) Thin Solid Films 519:4731–4736CrossRefGoogle Scholar
  20. 20.
    Zhao Q, Dunlop JWC, Qiu X, Huang F, Zhang Z, Heyda J, Dzubiella J, Antonietti M, Yuan J (2014) Nat Commun 5:4293. doi: 10.1038/ncomms5293 Google Scholar
  21. 21.
    Hong CY, Li X, Pan CY (2009) J Mater Chem 19:5155–5160CrossRefGoogle Scholar
  22. 22.
    Yuan L, Tang QQ, Yang D, Zhang JZ, Zhang FY, Hu JH (2011) J Phys Chem C 115:9926–9932CrossRefGoogle Scholar
  23. 23.
    Liu R, Liao P, Liu J, Feng P (2011) Langmuir 27:3095–3099CrossRefGoogle Scholar
  24. 24.
    Sun JT, Hong CY, Pan CY (2010) J Phys Chem C 114:1481–1486CrossRefGoogle Scholar
  25. 25.
    Chang B, Chen D, Wang Y, Chen Y, Jiao Y, Sha X, Yang W (2013) Chem Mater 25:574–585CrossRefGoogle Scholar
  26. 26.
    Hartono SB, Phuoc NT, Yu M, Jia Z, Monteiro MJ, Qiao S, Yu C (2014) J Mater Chem B 2:718–726CrossRefGoogle Scholar
  27. 27.
    Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) ACS Nano 3:3273–3286CrossRefGoogle Scholar
  28. 28.
    Howarter JA, Youngblood JP (2007) Adv Mater 19:3838–3843CrossRefGoogle Scholar
  29. 29.
    Nagappan S, Park SS, Ha CS (2014) J Nanosci Nanotechnol 14:1441–1462CrossRefGoogle Scholar
  30. 30.
    Groenewolt M (2008) Prog Org Coat 61:106–109CrossRefGoogle Scholar
  31. 31.
    Hussmann EK (1998) Key Eng Mater 150:49–66CrossRefGoogle Scholar
  32. 32.
    Chen D (2001) Sol Energy Mater Sol Cells 68:313–336CrossRefGoogle Scholar
  33. 33.
    Liu BT, Yeh WD (2010) Colloids Surf A Physicochem Eng Aspects 356:145–149CrossRefGoogle Scholar
  34. 34.
    Prado R, Beobide G, Marcaide A, Goikoetxea J, Aranzabe A (2010) Sol Energy Mater Sol Cells 94:1081–1088CrossRefGoogle Scholar
  35. 35.
    Stumpel JE, Broerab DJ, Schenning APHJ (2014) Chem Commun 50:15839–15848CrossRefGoogle Scholar
  36. 36.
    Li GL, Schenderlein M, Men Y, Möhwald H, Shchukin DG (2014) Adv Mater Interfaces 1:1300019Google Scholar
  37. 37.
    Fu JJ, Chen T, Wang MD, Yang NW, Li SN, Wang Y, Liu XD (2013) ACS Nano 7:11397–11408CrossRefGoogle Scholar
  38. 38.
    Chen T, Fu JJ (2012) Nanotechnology 23:505705CrossRefGoogle Scholar
  39. 39.
    de Haan LT, Verjans JMN, Broer DJ, Bastiaansen CWM, Schenning APHJ (2014) J Am Chem Soc 136:10585–10588CrossRefGoogle Scholar
  40. 40.
    Dai M, Picot OT, Verjans JMN, de Haan LT, Schenning APHJ, Peijs T, Bastiaansen CWM (2013) ACS Appl Mater Interfaces 5:4945–44950CrossRefGoogle Scholar
  41. 41.
    Zhang X, Pint CL, Lee MH, Schubert BE, Jamshidi A, Takei K, Ko H, Gillies A, Bardhan R, Urban JJ, Wu M, Fearing R, Javey A (2011) Nano Lett 11:3239–3244CrossRefGoogle Scholar
  42. 42.
    Du D, Wen H, Hu Z, Weng Y, Zhang WD (2014) Nanotechnology 25:195503CrossRefGoogle Scholar
  43. 43.
    Nakahata M, Takashima Y, Hashidzume A, Harada A (2013) Angew Chem Int Ed 52:5731–5735CrossRefGoogle Scholar
  44. 44.
    Huck WTS (2008) Mater Today 11:24–32CrossRefGoogle Scholar
  45. 45.
    Behl M, Kratz K, Noechel U, Sauter T, Lendlein A (2013) Proc Natl Acad Sci U S A 110:12555–12559CrossRefGoogle Scholar
  46. 46.
    Woodward RT, Olariu CI, Hasan EA, Yiu HHP, Rosseinsky MJ, Weaver JVM (2011) Soft Matter 7:4335–4340CrossRefGoogle Scholar
  47. 47.
    Kim H, Kwon S (2013) Science 339:150–151CrossRefGoogle Scholar
  48. 48.
    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) ACS Nano 2:889–896CrossRefGoogle Scholar
  49. 49.
    Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Adv Drug Deliv Rev 60:1278–1288CrossRefGoogle Scholar
  50. 50.
    Hernandez R, Tseng HR, Wong JW (2004) J Am Chem Soc 126:3370–3371CrossRefGoogle Scholar
  51. 51.
    Schlossbauer A, Kecht J, Bein T (2009) Angew Chem Int Ed 48:3092–3095CrossRefGoogle Scholar
  52. 52.
    Yang S, Li N, Chen D, Qi X, Xu Y, Yu Q, Li H, Lu J (2013) J Mater Chem B 1:4628–4636CrossRefGoogle Scholar
  53. 53.
    Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY (2010) Small 6:1952–1967CrossRefGoogle Scholar
  54. 54.
    Sun JT, Piao JG, Wang LH, Javed M, Hong CY, Pan CY (2013) Macromol Rapid Commun 34:1387–1394CrossRefGoogle Scholar
  55. 55.
    Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP (2008) Biomaterials 29:3477–3496CrossRefGoogle Scholar
  56. 56.
    Park IY, Kim IY, Yoo MK, Choi YJ, Cho MH, Cho CS (2008) Int J Pharm 359:280–287CrossRefGoogle Scholar
  57. 57.
    Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VSY (2004) J Am Chem Soc 126:13216–13217CrossRefGoogle Scholar
  58. 58.
    Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Adv Drug Deliv Rev 60:1266–1277CrossRefGoogle Scholar
  59. 59.
    Cheng Q, Miyaji F, Kokubo T, Nakamura T (1999) Biomaterials 20:1127–1134CrossRefGoogle Scholar
  60. 60.
    Vallet-Regi M, Ruiz-Gonzalez L, Izquierdo-Barba I, González-calbet JM (2006) J Mater Chem 16:26–31CrossRefGoogle Scholar
  61. 61.
    Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Sakamoto Y, Terasaki O, Vallet-Regi M (2006) Chem Mater 18:3137–3144CrossRefGoogle Scholar
  62. 62.
    Vallet-Regi M, Izquierdo-Barba I, Rámila A, Pariente JP, Babonneau F, González-calbet JM (2005) Solid State Sci 7:233–237CrossRefGoogle Scholar
  63. 63.
    Yan X, Yu C, Zhou X, Tang J, Zhao D (2004) Angew Chem Int Ed 43:5980–5984CrossRefGoogle Scholar
  64. 64.
    Grosu G, Andrzejewski L, Veilleux G, Ross GG (2004) J Phys D Appl Phys 37:3350–3355CrossRefGoogle Scholar
  65. 65.
    Lai Y, Tang Y, Gong J, Chi L, Lin C, Chen Z (2012) J Mater Chem 22:7420–7426CrossRefGoogle Scholar
  66. 66.
    Xiao M, Guo X, Cheng M, Ju G, Zhang Y, Shi F (2014) Small 10:859–865CrossRefGoogle Scholar
  67. 67.
    Hu J, Meng H, Li G, Ibekwe SI (2012) Smart Mater Struct 21:053001CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Saravanan Nagappan
    • 1
  • Madhappan Santha Moorthy
    • 1
  • Kummara Madhusudana Rao
    • 1
  • Chang-Sik Ha
    • 1
    Email author
  1. 1.Department of Polymer Science and EngineeringPusan National UniversityBusanKorea

Personalised recommendations