Nanocomposite Polymeric-Based Coatings: From Mathematical Modeling to Experimental Insights for Adapting Microstructure to High-Tech Requirements

  • Andreea Irina BarzicEmail author


Nanocomposite polymeric-based coatings have been widely investigated owing to their high performance and physical properties that can be easily controlled through various factors. The performance of such systems is determined not only by the characteristics of the polymers or nanofiller but also by the interactions occurring between them. For understanding the improvement routes of their properties, a short classification of the polymer nanocomposites highlighting the importance of the shape, size, distribution, and origin of the nanofiller is presented. A review of the investigation methods of the microstructure evaluation, starting from solution phase to solid coatings, is performed. These techniques include rheology, UV-VIS spectroscopy, microscopic techniques, electron tomography, X-ray diffraction, mechanical tests, permeability measurements, and advanced thermal analysis. In addition to experimental evaluation tools, synthesis for the mathematical models developed for their electrical, thermal, and dielectric properties is presented. The current trends in obtaining intelligent polymer composites (thermo-sensitive, pH-responsive, and other responsive stimuli) for various applications are also reviewed.


Polymer nanocomposites Microstructure Intelligent materials 


  1. 1.
    Davim JP, Charitidis CA (2013) Nanocomposites: materials, manufacturing and engineering (advanced composites). Wer De Gruyter, BerlinCrossRefGoogle Scholar
  2. 2.
    Lim EK, Sajomsang W, Choi Y, Jang E, Lee H, Kang B, Kim E, Haam S, Suh JS, Chung SJ, Huh YM (2013) Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res Lett 8:467CrossRefGoogle Scholar
  3. 3.
    Mittal V (2010) Polymer nanocomposites: synthesis, microstructure, and properties. In: Optimization of polymer nanocomposite properties. Wiley, WeinheimCrossRefGoogle Scholar
  4. 4.
    Mutlay İ, Tudoran LB (2014) Percolation behavior of electrically conductive graphene nanoplatelets/polymer nanocomposites: theory and experiment. Nanotube Carbon Nanostruct 22:413CrossRefGoogle Scholar
  5. 5.
    Zhang X, Servos MR, Liu J (2012) Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 134:7266CrossRefGoogle Scholar
  6. 6.
    Sumfleth J, Buschhorn ST, Schulte K (2011) Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. J Mater Sci 46:659CrossRefGoogle Scholar
  7. 7.
    Yu J, Lu K, Sourty E, Grossiord N, Koning CE, Loos J (2007) Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45:2897CrossRefGoogle Scholar
  8. 8.
    Kotsilkova R (2007) Thermoset nanocomposites for engineering applications. Smithers RapraTechnology Limited, ShawburyGoogle Scholar
  9. 9.
    Mittal V (2012) Modeling and prediction of polymer nanocomposite properties. Wiley, WeinheimGoogle Scholar
  10. 10.
    Barzic RF, Barzic AI, Dumitrascu G (2014) Percolation network formation in poly(4-vinylpyridine)/aluminum nitride nanocomposites: rheological, dielectric, and thermal investigations. Polym Compos 35:1543CrossRefGoogle Scholar
  11. 11.
    Barzic RF, Barzic AI, Dumitrascu G (2014) Percolation effects on dielectric properties of polystyrene/batio3 nanocomposites. UPB Sci Bull Ser A 76:225Google Scholar
  12. 12.
    Thomas S, Joseph K, Malhotra SK, Goda K, Sreekala MS (2012) Polymer composites, vol 1. Wiley, WeinheimCrossRefGoogle Scholar
  13. 13.
    Eucken A (1940) Allgemeine gesetzmassigkeiten fur das warmeleitvermfigen verschiedener stoffarten und aggregatzustande. Forsch Gebiete Ingenieur 11:6CrossRefGoogle Scholar
  14. 14.
    Fricke H (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems i. the electric conductivity of a suspension of homogeneous spheroids. Phys Rev 24:575CrossRefGoogle Scholar
  15. 15.
    Nielsen E, Landel RF (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York, NYGoogle Scholar
  16. 16.
    Springer GS, Tsai SW (1967) Thermal conductivities of unidirectional materials. J Compos Mater 1:166CrossRefGoogle Scholar
  17. 17.
    Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 10:6692CrossRefGoogle Scholar
  18. 18.
    Vysotsky VV, Roldughin VI (1999) Aggregate structure and percolation properties of metal-filled polymer films. Colloid Surf A 160:171CrossRefGoogle Scholar
  19. 19.
    Böttcher CF (1973) Theory of electric polarisation. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Karkkainen KK, Sihvola AH, Nikoskinen KI (2000) Effective permittivity of mixtures: numerical validation by the FDTD method. IEEE Trans Geosci Remote Sens 38:1303CrossRefGoogle Scholar
  21. 21.
    Giordano S (2003) Effective medium theory for dispersions of dielectric ellipsoids. J Electrostatics 58:59CrossRefGoogle Scholar
  22. 22.
    Yamada T, Ueda T, Kitayama T (1982) Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J Appl Phys 53:4328CrossRefGoogle Scholar
  23. 23.
    Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574CrossRefGoogle Scholar
  24. 24.
    Mamunya YP, Davydenko VV, Pissis P, Lebedev EV (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J 38:1887CrossRefGoogle Scholar
  25. 25.
    Balberg I, Anderson CH, Alexander S, Wagner N (1984) Excluded volume and its relation to the onset of percolation. Phys Rev B 30:3933CrossRefGoogle Scholar
  26. 26.
    Bhat RR, Genzer J (2006) Combinatorial study of nanoparticle dispersion in surface-grafted macromolecular gradients. Appl Surf Sci 252:2549CrossRefGoogle Scholar
  27. 27.
    Karak N (2009) Fundamentals of polymers: raw materials to finish products. PHI Learning, New DelhiGoogle Scholar
  28. 28.
    Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884CrossRefGoogle Scholar
  29. 29.
    Jenkins R (2000) X-ray techniques: overview. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, ChichesterGoogle Scholar
  30. 30.
    Žukas T, Jankauskaitė V, Žukienė K, Baltušnikas A (2012) The influence of nanofillers on the mechanical properties of carbon fibre reinforced methyl methacrylate composite. Mater Sci (Medžiagotyra) 18:250Google Scholar
  31. 31.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocompositess. Polymer 52:5CrossRefGoogle Scholar
  32. 32.
    Šupová M, Martynková GS, Barabaszová K (2011) Effect of nanofillers dispersion in polymer matrices: a review. Sci Adv Mater 3:1CrossRefGoogle Scholar
  33. 33.
    Corcione CE, Cavallo A, Pesce E, Greco A, Maffezzoli A (2011) Evaluation of the degree of dispersion of nanofillers by mechanical, rheological, and permeability analysis. Polym Eng Sci 51:1280CrossRefGoogle Scholar
  34. 34.
    Greco A, Cavallo A, Corcione CE, Maffezzoli A (2011) Macroscopic evaluation of nanofiller dispersion. SPE Plast Res Online. doi:10.1002/spepro003641Google Scholar
  35. 35.
    Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189CrossRefGoogle Scholar
  36. 36.
    Miltner HE, Watzeels N, Goffin AL, Duquesne E, Benali S, Dubois P, Rahier H, Van Mele B (2010) Quantifying the degree of nanofiller dispersion by advanced thermal analysis: application to polyester nanocomposites prepared by various elaboration methods. J Mater Chem 20:9531CrossRefGoogle Scholar
  37. 37.
    Satarkar NS, Hilt JZ (2008) Hydrogel nanocomposites as remote controlled biomaterials. Acta Biomater 4:11CrossRefGoogle Scholar
  38. 38.
    Owens DE III, Eby JK, Jian Y, Peppas NA (2007) Temperature responsive polymer-gold nanocomposites as intelligent therapeutic systems. J Biomed Mater Res A 83:692Google Scholar
  39. 39.
    Liu Y, Gall K, Dunn ML, McCluskey P (2003) Thermomechanical recovery couplings of shape memory polymers in flexure. Smart Mater Struct 12:947CrossRefGoogle Scholar
  40. 40.
    Li D, He Q, Yang Y, Mohwald H, Li J (2008) Two-stage pH response of poly(4-vinylpyridine) grafted gold nanoparticles. Macromolecules 41:7254CrossRefGoogle Scholar
  41. 41.
    Li D, He Q, Li J (2009) Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Colloid Interface Sci 149:28CrossRefGoogle Scholar
  42. 42.
    Duan HW, Kuang M, Wang DY, Kurth DG, Möhwald H (2005) Colloidally stable amphibious nanocrystals derived from poly{[2-(dimethylamino)ethyl] methacrylate} capping. Angew Chem Int Ed 44:1717CrossRefGoogle Scholar
  43. 43.
    Duan HW, Kuang M, Zhang G, Wang DY, Kurth DG, Möhwald H (2005) pH-responsive polymeric nanocapsules by templating nanocrystals. Langmuir 21:11495CrossRefGoogle Scholar
  44. 44.
    Meng H, Hu J (2010) A brief review of stimulus-active polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli. J Intell Mater Syst Struct 21:859CrossRefGoogle Scholar
  45. 45.
    Wang W, Wan J, Ning B, Xia J, Cao X (2008) Preparation of a novel light-sensitive copolymer and its application in recycling aqueous two-phase systems. J Chromatogr A 1205:171CrossRefGoogle Scholar
  46. 46.
    Snyder EA, Tong TH (2005) Towards novel light-activated shape memory polymer: thermomechanical properties of photo-responsive polymers. Mater Res Soc Symp Proc 872:353CrossRefGoogle Scholar
  47. 47.
    Hogea CS, Armstrong WD (2002) The time-dependent magneto-visco-elastic behavior of a magnetostrictive fiber actuated viscoelastic polymer matrix composite. J Acoust Soc Am 112:1928CrossRefGoogle Scholar
  48. 48.
    Burke NAD, Stover HDH, Dawson FP (2002) Magnetic nanocomposites: preparation a and characterization of polymer- coated iron particles. Chem Mater 14:4752CrossRefGoogle Scholar
  49. 49.
    Kottke EA, Partridge LD, Shahinpoor M (2007) Bio-potential neural activation of artificial muscles journal of intelligent material systems and structures. J Intell Mater Syst Struct 18:103CrossRefGoogle Scholar
  50. 50.
    Shahinpoor M, Kim KJ (2005) Ionic polymer–metal composites: IV Industrial and medical applications. Smart Mater Struct 14:197CrossRefGoogle Scholar
  51. 51.
    Shahinpoor M, Kim KJ, Leo DJ (2003) Ionic polymer-metal composites as multifunctional materials. Polym Compos 24:24CrossRefGoogle Scholar
  52. 52.
    Fraysse J, Minett AI, Jaschinski O, Duesberg GS, Roth S (2002) Carbon nanotubes acting like actuators. Carbon 40:1735CrossRefGoogle Scholar
  53. 53.
    Qu L, Peng Q, Dai L, Spinks GM, Wallace GG, Baughman RH (2008) Carbon nanotube electroactive polymer materials: opportunities and challenges. MRS Bull 33:215CrossRefGoogle Scholar
  54. 54.
    Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zettl A (2003) Rotational actuators based on carbon nanotubes. Nature 424:408CrossRefGoogle Scholar
  55. 55.
    Lefevre R, Goffman MF, Derycke V, Miko C, Forro L, Bourgoin JP, Hesto P (2005) Scaling law in carbon nanotube electromechanical devices. Phys Rev Lett 95:185504CrossRefGoogle Scholar
  56. 56.
    Cumings J, Zettl A (2000) Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 28:60Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations