Multifunctional Materials for Biotechnology: Opportunities and Challenges

  • Luminita Ioana BuruianaEmail author


The use of multifunctional materials in different biomedical applications has attracted much attention in recent years. Desire for biocompatible devices has paved the way for highly degradable and biocompatible materials that are specifically designed for targeted drug delivery and imaging contrast agents. Cellular and molecular interactions as well as those for engineered materials (atoms, molecules, and molecular fragments) are the foundation of biotechnology, where smart multifunctional materials can serve as targeted drug delivery carriers, able to release therapeutic agents or genes in large doses into malignant cells without harming healthy cells. Simultaneously, these systems have the potential to radically change oncology, allowing for easy detection followed by effective targeted treatment at the onset of the disease. In this context, given the exhaustive possibilities available to polymeric particle chemistry, research has been directed at multifunctional materials that combine tumor targeting, tumor therapy, and tumor imaging in an all-in-one system, providing a useful multimodal approach in the battle against cancer. In this context, a wide range of multifunctional systems, formed by liposomes, polymeric-coated magnetic particles, nanoemulsions, micelles, and hydrogels, have shown tremendous progress in biotechnology applications. These engineered multifunctional materials have evolved to possess interesting properties such as prolonged life cycling while circulating in blood, target specificity, and increased cell penetration of the therapeutic drugs and molecules. Current research is focused on understanding and taking advantage of the features of a tumor’s microenvironment, including pH and temperature changes.


Multifunctional materials Polymers Biotechnology Drug delivery 


  1. 1.
    Thomas JP, Qidwai MA (2004) Mechanical design and performance of composite multifunctional materials. Acta Mater 52:2155–2164CrossRefGoogle Scholar
  2. 2.
    Rennie J (2000) Science 282:8–10Google Scholar
  3. 3.
    Haag R, Vogtle F (2004) Highly branched macromolecules at the interface of chemistry, biology, physics, and medicine. Angew Chem Int Ed 43:272–273CrossRefGoogle Scholar
  4. 4.
    Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318Google Scholar
  5. 5.
    Drummond DC, Zignani M, Leroux JC (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39:409–460CrossRefGoogle Scholar
  6. 6.
    Li KC, Pandit SD, Guccione S, Bednarski MD (2004) Molecular imaging applications in nanomedicine. Biomed Microdevices 6:113–116CrossRefGoogle Scholar
  7. 7.
    Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430CrossRefGoogle Scholar
  8. 8.
    Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419CrossRefGoogle Scholar
  9. 9.
    Lee ES, Na K, Bae YH (2003) Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release 91:103–113CrossRefGoogle Scholar
  10. 10.
    Lee ES, Na K, Bae YH (2005) Super pH-sensitive multifunctional polymeric micelle. Nano Lett 5:325–329CrossRefGoogle Scholar
  11. 11.
    Hymes J, Wolf B (1999) Human biotinidase isn’t just for recycling biotin. J Nutr 129:S485–S489Google Scholar
  12. 12.
    Buck SM (2004) Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr Opin Chem Biol 8:540–546CrossRefGoogle Scholar
  13. 13.
    Sukhorukov GB, Rogach AL, Zebli B, Liedl T, Skirtach AG, Kçhler K, Antipov AA, Gaponik N, Susha AS, Winterhalter M, Parak WJ (2005) Nanoengineered polymercapsules: toolsfordetection, controlleddelivery, and site-specific manipulation. Small 1:194–200CrossRefGoogle Scholar
  14. 14.
    Sukhorukov GB, Rogach AL, Garstka M, Springer S, Parak WJ, Munoz-Javier A, Kreft O, Skirtach AG, Susha AS, Ramaye Y, Palankar R, Winterhalter M (2007) Multifunctionalized polymer microcapsules: novel tools for biological and pharmacological applications. Small 3:944–955CrossRefGoogle Scholar
  15. 15.
    Martina MS, Fortin JP, Fournier L, Menager C, Gazeau F, Clement O, Lesieu S (2007) Magnetic targeting of rhodamine-labeled superparamagnetic liposomes to solid tumors: in vivo tracking by fibered confocal fluorescence microscopy. Mol Imaging 6:140–146Google Scholar
  16. 16.
    Zebli B, Susha AS, Sukhorukov GB, Rogach AL, Parak WJ (2005) Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. Langmuir 21:4262–4265CrossRefGoogle Scholar
  17. 17.
    Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRefGoogle Scholar
  18. 18.
    Zhou JF, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262CrossRefGoogle Scholar
  19. 19.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294CrossRefGoogle Scholar
  20. 20.
    Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49CrossRefGoogle Scholar
  21. 21.
    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183CrossRefGoogle Scholar
  22. 22.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730CrossRefGoogle Scholar
  23. 23.
    Reijnders L (2008) Hazard reduction in nanotechnology. J Ind Ecol 12:297–306CrossRefGoogle Scholar
  24. 24.
    Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 20:8426–8430CrossRefGoogle Scholar
  25. 25.
    Alexandridis P (2011) Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem Eng Technol 34:15–28CrossRefGoogle Scholar
  26. 26.
    Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112CrossRefGoogle Scholar
  27. 27.
    Ofir Y, Samanta B, Rotello VM (2008) Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem Soc Rev 37:1814–1825CrossRefGoogle Scholar
  28. 28.
    Taylor S, Qu LW, Kitaygorodskiy A, Teske J, Latour RA, Sun YP (2004) Synthesis and characterization of peptide–functionalized polymeric nanoparticles. Biomacromolecules 5:245–248CrossRefGoogle Scholar
  29. 29.
    Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147CrossRefGoogle Scholar
  30. 30.
    Kramer M, Stumbe JF, Grimm G, Kaufmann B, Kruger U, Weber M, Haag R (2004) Dendritic polyamines: a simple access to new materials with defined tree-like structures for application in non-viral gene delivery. Chem Biochem 5:1081–1087Google Scholar
  31. 31.
    Yu FQ, Liu YP, Zhu RX (2004) A novel method for the preparation of core-shell nanoparticles and hollow polymer nanospheres. J Appl Polym Sci 91:2594–2600CrossRefGoogle Scholar
  32. 32.
    Talsma SS, Babensee JE, Murthy N, Williams IR (2006) Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. J Control Release 112:271–279CrossRefGoogle Scholar
  33. 33.
    Thomas TP, Majoros IJ, Kotlyar A, Kukowska-Latallo JF, Bielinska A, Myc A, Baker JR (2005) Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 48:3729–3735CrossRefGoogle Scholar
  34. 34.
    Hartig SM, Greene RR, Dikov MM, Prokop A, Davidson JM (2007) Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res 24:2353–2369CrossRefGoogle Scholar
  35. 35.
    Schatz C, Lucas JM, Viton C, Domard A, Pichot C, Delair T (2004) Formation and properties of positively charged colloids based on polyelectrolyte complexes of biopolymers. Langmuir 20:7766–7778CrossRefGoogle Scholar
  36. 36.
    Carlesso G, Kozlov E, Prokop A, Unutmaz D, Davidson JM (2005) Nanoparticulate system for efficient gene transfer into refractory cell targets. Biomacromolecules 6:1185–1192CrossRefGoogle Scholar
  37. 37.
    Fisher KD, Ulbrich K, Subr V, Ward CM, Mautner V, Blakey D, Seymour W (2000) A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression. Gene Ther 7:1337–1343CrossRefGoogle Scholar
  38. 38.
    Jimenez-Kairuz AF, Llabot JM, Allemandi DA, Manzo RH (2005) Swellable drug-polyelectrolyte matrices (SDPM): characterization and delivery properties. Int J Pharm 288:87–99CrossRefGoogle Scholar
  39. 39.
    Liao IC, Wan ACA, Yim EK, Leong KW (2005) Controlled release from fibers of polyelectrolyte complexes. J Control Release 104:347–358CrossRefGoogle Scholar
  40. 40.
    de la Torre MP, Enobakhare Y, Torrado G, Torrado S (2003) Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid) Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 24:1499–1506CrossRefGoogle Scholar
  41. 41.
    Herea DD, Chiriac H, Lupu N (2011) Preparation and characterization of magnetic nanoparticles with controlled magnetization. J Nanopart Res 13:4357–4369CrossRefGoogle Scholar
  42. 42.
    Alexiou C, Tietze R, Schreiber E, Jurgons R, Richter H, Trahms L, Rahn H, Odenbach S, Lyer S (2011) Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting. J Magn Magn Mater 323:1404–1407CrossRefGoogle Scholar
  43. 43.
    Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44:853–862CrossRefGoogle Scholar
  44. 44.
    Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans NanoBiosci 3:66–73CrossRefGoogle Scholar
  45. 45.
    Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36CrossRefGoogle Scholar
  46. 46.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  47. 47.
    Portet D, Denizot B, Rump E, Lejeune JJ, Jallet P (2001) Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J Colloid Interface Sci 238:37–42CrossRefGoogle Scholar
  48. 48.
    Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR, Ellenbogen RG, Zhang M (2011) Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 152:76–83CrossRefGoogle Scholar
  49. 49.
    Kumar M, Yigit M, Dai G, Moore A, Medarova Z (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70:7553–7561CrossRefGoogle Scholar
  50. 50.
    Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRefGoogle Scholar
  51. 51.
    Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23:2436–2442CrossRefGoogle Scholar
  52. 52.
    Singh N, Jenkins GJ, Asadi R (2010) Doak SH Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358–5373CrossRefGoogle Scholar
  53. 53.
    Yigit MV, Moore A, Medarova Z (2012) Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res 29:1180–1188CrossRefGoogle Scholar
  54. 54.
    Chiriac H, Tibu M, Dobrea V, Murgulescu I (2004) Thin magnetic amorphous wires for GMI sensor. J Optoelectron Adv Mater 6:647–650Google Scholar
  55. 55.
    Chiriac H, Tibu M, Moga AE, Herea DD (2005) Magnetic GMI sensor for detection of biomolecules. J Magn Magn Mater 293:671–676CrossRefGoogle Scholar
  56. 56.
    Chiriac H, Herea DD, Corodeanu S (2007) Microwire array for giant magneto-impedance detection of magnetic particles for biosensor prototype. J Magn Magn Mater 311:425–428CrossRefGoogle Scholar
  57. 57.
    Ward TR (2005) Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein. Chem Eur J 11:3798–3804CrossRefGoogle Scholar
  58. 58.
    Abd-El-Aziz AS, Todd EK, Okash RM, Afifi TH (2003) Organo-iron polymers containing azo dyes. Macromol Symp 196:89–99CrossRefGoogle Scholar
  59. 59.
    Andres PR, Schubert US (2004) New functional polymers and materials based on 2, 2’: 6’, 2”-terpyridine metal complexes. Adv Mater 16:1043–1068Google Scholar
  60. 60.
    Holliday BJ, Swager TM (2005) Conducting metallopolymers: the roles of molecular architecture and redox matching. Chem Commun 23–36Google Scholar
  61. 61.
    Westgate T (2006) Chem World 3:64Google Scholar
  62. 62.
    Whittell GR, Manners I (2007) Metallopolymers: New multifunctional materials. Adv Mater 19:3439–3468CrossRefGoogle Scholar
  63. 63.
    Chan WY, Clendenning SB, Berenbaum A, Lough AJ, Aouba S, Ruda HE, Manners I (2005) Highly metallized polymers: synthesis, characterization, and lithographic patterning of polyferrocenylsilanes with pendant cobalt, molybdenum, and nickel cluster substituents. J Am Chem Soc 127:1765–1772CrossRefGoogle Scholar
  64. 64.
    Shoichet MS (2010) Polymer scaffolds for biomaterials applications. Macromolecules 43:581–591CrossRefGoogle Scholar
  65. 65.
    Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations