Skip to main content

Multifunctional Materials for Biotechnology: Opportunities and Challenges

  • Chapter
  • First Online:
Industrial Applications for Intelligent Polymers and Coatings
  • 3123 Accesses

Abstract

The use of multifunctional materials in different biomedical applications has attracted much attention in recent years. Desire for biocompatible devices has paved the way for highly degradable and biocompatible materials that are specifically designed for targeted drug delivery and imaging contrast agents. Cellular and molecular interactions as well as those for engineered materials (atoms, molecules, and molecular fragments) are the foundation of biotechnology, where smart multifunctional materials can serve as targeted drug delivery carriers, able to release therapeutic agents or genes in large doses into malignant cells without harming healthy cells. Simultaneously, these systems have the potential to radically change oncology, allowing for easy detection followed by effective targeted treatment at the onset of the disease. In this context, given the exhaustive possibilities available to polymeric particle chemistry, research has been directed at multifunctional materials that combine tumor targeting, tumor therapy, and tumor imaging in an all-in-one system, providing a useful multimodal approach in the battle against cancer. In this context, a wide range of multifunctional systems, formed by liposomes, polymeric-coated magnetic particles, nanoemulsions, micelles, and hydrogels, have shown tremendous progress in biotechnology applications. These engineered multifunctional materials have evolved to possess interesting properties such as prolonged life cycling while circulating in blood, target specificity, and increased cell penetration of the therapeutic drugs and molecules. Current research is focused on understanding and taking advantage of the features of a tumor’s microenvironment, including pH and temperature changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas JP, Qidwai MA (2004) Mechanical design and performance of composite multifunctional materials. Acta Mater 52:2155–2164

    Article  Google Scholar 

  2. Rennie J (2000) Science 282:8–10

    Google Scholar 

  3. Haag R, Vogtle F (2004) Highly branched macromolecules at the interface of chemistry, biology, physics, and medicine. Angew Chem Int Ed 43:272–273

    Article  Google Scholar 

  4. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  5. Drummond DC, Zignani M, Leroux JC (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39:409–460

    Article  Google Scholar 

  6. Li KC, Pandit SD, Guccione S, Bednarski MD (2004) Molecular imaging applications in nanomedicine. Biomed Microdevices 6:113–116

    Article  Google Scholar 

  7. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430

    Article  Google Scholar 

  8. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    Article  Google Scholar 

  9. Lee ES, Na K, Bae YH (2003) Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release 91:103–113

    Article  Google Scholar 

  10. Lee ES, Na K, Bae YH (2005) Super pH-sensitive multifunctional polymeric micelle. Nano Lett 5:325–329

    Article  Google Scholar 

  11. Hymes J, Wolf B (1999) Human biotinidase isn’t just for recycling biotin. J Nutr 129:S485–S489

    Google Scholar 

  12. Buck SM (2004) Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding. Curr Opin Chem Biol 8:540–546

    Article  Google Scholar 

  13. Sukhorukov GB, Rogach AL, Zebli B, Liedl T, Skirtach AG, Kçhler K, Antipov AA, Gaponik N, Susha AS, Winterhalter M, Parak WJ (2005) Nanoengineered polymercapsules: toolsfordetection, controlleddelivery, and site-specific manipulation. Small 1:194–200

    Article  Google Scholar 

  14. Sukhorukov GB, Rogach AL, Garstka M, Springer S, Parak WJ, Munoz-Javier A, Kreft O, Skirtach AG, Susha AS, Ramaye Y, Palankar R, Winterhalter M (2007) Multifunctionalized polymer microcapsules: novel tools for biological and pharmacological applications. Small 3:944–955

    Article  Google Scholar 

  15. Martina MS, Fortin JP, Fournier L, Menager C, Gazeau F, Clement O, Lesieu S (2007) Magnetic targeting of rhodamine-labeled superparamagnetic liposomes to solid tumors: in vivo tracking by fibered confocal fluorescence microscopy. Mol Imaging 6:140–146

    Google Scholar 

  16. Zebli B, Susha AS, Sukhorukov GB, Rogach AL, Parak WJ (2005) Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. Langmuir 21:4262–4265

    Article  Google Scholar 

  17. Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825

    Article  Google Scholar 

  18. Zhou JF, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262

    Article  Google Scholar 

  19. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  Google Scholar 

  20. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  Google Scholar 

  21. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183

    Article  Google Scholar 

  22. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    Article  Google Scholar 

  23. Reijnders L (2008) Hazard reduction in nanotechnology. J Ind Ecol 12:297–306

    Article  Google Scholar 

  24. Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 20:8426–8430

    Article  Google Scholar 

  25. Alexandridis P (2011) Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem Eng Technol 34:15–28

    Article  Google Scholar 

  26. Rozenberg BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112

    Article  Google Scholar 

  27. Ofir Y, Samanta B, Rotello VM (2008) Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem Soc Rev 37:1814–1825

    Article  Google Scholar 

  28. Taylor S, Qu LW, Kitaygorodskiy A, Teske J, Latour RA, Sun YP (2004) Synthesis and characterization of peptide–functionalized polymeric nanoparticles. Biomacromolecules 5:245–248

    Article  Google Scholar 

  29. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147

    Article  Google Scholar 

  30. Kramer M, Stumbe JF, Grimm G, Kaufmann B, Kruger U, Weber M, Haag R (2004) Dendritic polyamines: a simple access to new materials with defined tree-like structures for application in non-viral gene delivery. Chem Biochem 5:1081–1087

    Google Scholar 

  31. Yu FQ, Liu YP, Zhu RX (2004) A novel method for the preparation of core-shell nanoparticles and hollow polymer nanospheres. J Appl Polym Sci 91:2594–2600

    Article  Google Scholar 

  32. Talsma SS, Babensee JE, Murthy N, Williams IR (2006) Development and in vitro validation of a targeted delivery vehicle for DNA vaccines. J Control Release 112:271–279

    Article  Google Scholar 

  33. Thomas TP, Majoros IJ, Kotlyar A, Kukowska-Latallo JF, Bielinska A, Myc A, Baker JR (2005) Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 48:3729–3735

    Article  Google Scholar 

  34. Hartig SM, Greene RR, Dikov MM, Prokop A, Davidson JM (2007) Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res 24:2353–2369

    Article  Google Scholar 

  35. Schatz C, Lucas JM, Viton C, Domard A, Pichot C, Delair T (2004) Formation and properties of positively charged colloids based on polyelectrolyte complexes of biopolymers. Langmuir 20:7766–7778

    Article  Google Scholar 

  36. Carlesso G, Kozlov E, Prokop A, Unutmaz D, Davidson JM (2005) Nanoparticulate system for efficient gene transfer into refractory cell targets. Biomacromolecules 6:1185–1192

    Article  Google Scholar 

  37. Fisher KD, Ulbrich K, Subr V, Ward CM, Mautner V, Blakey D, Seymour W (2000) A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expression. Gene Ther 7:1337–1343

    Article  Google Scholar 

  38. Jimenez-Kairuz AF, Llabot JM, Allemandi DA, Manzo RH (2005) Swellable drug-polyelectrolyte matrices (SDPM): characterization and delivery properties. Int J Pharm 288:87–99

    Article  Google Scholar 

  39. Liao IC, Wan ACA, Yim EK, Leong KW (2005) Controlled release from fibers of polyelectrolyte complexes. J Control Release 104:347–358

    Article  Google Scholar 

  40. de la Torre MP, Enobakhare Y, Torrado G, Torrado S (2003) Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid) Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 24:1499–1506

    Article  Google Scholar 

  41. Herea DD, Chiriac H, Lupu N (2011) Preparation and characterization of magnetic nanoparticles with controlled magnetization. J Nanopart Res 13:4357–4369

    Article  Google Scholar 

  42. Alexiou C, Tietze R, Schreiber E, Jurgons R, Richter H, Trahms L, Rahn H, Odenbach S, Lyer S (2011) Cancer therapy with drug loaded magnetic nanoparticles-magnetic drug targeting. J Magn Magn Mater 323:1404–1407

    Article  Google Scholar 

  43. Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44:853–862

    Article  Google Scholar 

  44. Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans NanoBiosci 3:66–73

    Article  Google Scholar 

  45. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36

    Article  Google Scholar 

  46. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  47. Portet D, Denizot B, Rump E, Lejeune JJ, Jallet P (2001) Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J Colloid Interface Sci 238:37–42

    Article  Google Scholar 

  48. Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR, Ellenbogen RG, Zhang M (2011) Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 152:76–83

    Article  Google Scholar 

  49. Kumar M, Yigit M, Dai G, Moore A, Medarova Z (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70:7553–7561

    Article  Google Scholar 

  50. Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  Google Scholar 

  51. Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23:2436–2442

    Article  Google Scholar 

  52. Singh N, Jenkins GJ, Asadi R (2010) Doak SH Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358–5373

    Article  Google Scholar 

  53. Yigit MV, Moore A, Medarova Z (2012) Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res 29:1180–1188

    Article  Google Scholar 

  54. Chiriac H, Tibu M, Dobrea V, Murgulescu I (2004) Thin magnetic amorphous wires for GMI sensor. J Optoelectron Adv Mater 6:647–650

    Google Scholar 

  55. Chiriac H, Tibu M, Moga AE, Herea DD (2005) Magnetic GMI sensor for detection of biomolecules. J Magn Magn Mater 293:671–676

    Article  Google Scholar 

  56. Chiriac H, Herea DD, Corodeanu S (2007) Microwire array for giant magneto-impedance detection of magnetic particles for biosensor prototype. J Magn Magn Mater 311:425–428

    Article  Google Scholar 

  57. Ward TR (2005) Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein. Chem Eur J 11:3798–3804

    Article  Google Scholar 

  58. Abd-El-Aziz AS, Todd EK, Okash RM, Afifi TH (2003) Organo-iron polymers containing azo dyes. Macromol Symp 196:89–99

    Article  Google Scholar 

  59. Andres PR, Schubert US (2004) New functional polymers and materials based on 2, 2’: 6’, 2”-terpyridine metal complexes. Adv Mater 16:1043–1068

    Google Scholar 

  60. Holliday BJ, Swager TM (2005) Conducting metallopolymers: the roles of molecular architecture and redox matching. Chem Commun 23–36

    Google Scholar 

  61. Westgate T (2006) Chem World 3:64

    Google Scholar 

  62. Whittell GR, Manners I (2007) Metallopolymers: New multifunctional materials. Adv Mater 19:3439–3468

    Article  Google Scholar 

  63. Chan WY, Clendenning SB, Berenbaum A, Lough AJ, Aouba S, Ruda HE, Manners I (2005) Highly metallized polymers: synthesis, characterization, and lithographic patterning of polyferrocenylsilanes with pendant cobalt, molybdenum, and nickel cluster substituents. J Am Chem Soc 127:1765–1772

    Article  Google Scholar 

  64. Shoichet MS (2010) Polymer scaffolds for biomaterials applications. Macromolecules 43:581–591

    Article  Google Scholar 

  65. Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita Ioana Buruiana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buruiana, L.I. (2016). Multifunctional Materials for Biotechnology: Opportunities and Challenges. In: Hosseini, M., Makhlouf, A. (eds) Industrial Applications for Intelligent Polymers and Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-26893-4_16

Download citation

Publish with us

Policies and ethics