Piezoelectric PVDF Polymeric Films and Fibers: Polymorphisms, Measurements, and Applications

  • Ramin KhajaviEmail author
  • Mina Abbasipour


The development of piezoelectric materials has surged forward due to their ability to convert mechanical energy into electrical energy and conversely. A wide range of materials have so far been introduced in the field, among which lead zirconate titanate (PZT) and polyvinylidene fluoride (PVDF) are the highlighted products because of their higher conversion efficiency, especially the high flexibility of the latter. PVDF is a semicrystalline polymer whose molecular structure is composed of a repeating monomer unit of (–CH2CF2–)n. In this chapter, different polymorphisms of PVDF depending on the chain conformations of trans (T) and gauche (G) linkages are presented. Also, various methods such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) analysis, and differential scanning calorimetry (DSC) employed for the investigation of phase transition are summarized. Strategies for the enhancement of the β-phase such as mechanical stretching, electrical polling, and addition of fillers are discussed. Moreover, the evaluation components of the piezoelectric efficiency including piezoelectric coefficients, responding voltage, polarization-electric field (P-E) hysteresis loops, electric displacement field (charge per unit area), permittivity (also known as dielectric constant), and dielectric loss factor (tan δ) are emphasized. Finally, the applications of PVDF polymers were discussed in the design of piezoelectric sensors, actuators, and energy harvesting devices.


Piezoelectric materials Fiber and film Polymorphism β-Phase Sensors Actuators Energy harvesting 


  1. 1.
    Nechibvute A, Chawanda A, Luhanga P (2012) Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater Res 2012:1–13CrossRefGoogle Scholar
  2. 2.
    Dakua I, Afzulpurkar N (2013) Piezoelectric energy generation and harvesting at nano-scale: materials and device. Nanomater Nanotechnol 3:1–16CrossRefGoogle Scholar
  3. 3.
    Fang X-Q, Liu J-X, Gupta V (2013) Fundamental formulations and recent achievements in piezoelectric nano-structures: orientation. Nanoscale 5:1716–1726CrossRefGoogle Scholar
  4. 4.
    Kim HS, Kim J-H, Kim J (2011) A review of piezoelectric energy harvesting based on vibration. Int J Precis Eng Manuf 12:1129–1141CrossRefGoogle Scholar
  5. 5.
    Bowen C, Kim A, Dunn S, Weaver P (2013) Piezoelectric and ferroelectric materials and structures for energy harvesting application. Energy Environ Sci. doi: 10.1039/C3EE42454E Google Scholar
  6. 6.
    Kawai H (1969) The piezoelectricity of poly(vinylidene fluoride). Jpn J Appl Phys 8:975–976CrossRefGoogle Scholar
  7. 7.
    Bar-Cohen Y, Zhang Q (2008) Electroactive polymer actuators and sensors. MRS Bull 33:173–181CrossRefGoogle Scholar
  8. 8.
    Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115–1121CrossRefGoogle Scholar
  9. 9.
    Fukada E (2000) History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferroelectr Freq Control 47:1277–1290CrossRefGoogle Scholar
  10. 10.
    Kepler RG, Anderson RA (1978) Piezoelectricity and pyroelectricity in polyvinylidene fluoride. J Appl Phys 49:4490–4494CrossRefGoogle Scholar
  11. 11.
    Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1:356–371CrossRefGoogle Scholar
  12. 12.
    Lovinger AJ (1982) Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules 15:40–44CrossRefGoogle Scholar
  13. 13.
    Correia HMG, Ramos MMD (2005) Quantum modeling of poly(vinylidene fluoride). Comput Mater Sci 33:224–229CrossRefGoogle Scholar
  14. 14.
    Bachmann MA, Gordon WL, Koenig JL, Lando JB (1979) An infrared study of phase-III poly(vinylidene fluoride). J Appl Phys 50:6106–6112CrossRefGoogle Scholar
  15. 15.
    Prest WM, Luca DJ (1978) Formation of gamma-phase from alpha-polymorphs and beta-polymorphs of polyvinylidene fluoride. J Appl Phys 49:5042–5047CrossRefGoogle Scholar
  16. 16.
    Gregorio R (2006) Determination of the alpha, beta, and gamma crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100:3272–3279CrossRefGoogle Scholar
  17. 17.
    Boccaccio T, Bottino A, Capannelli G, Piaggio P (2002) Characterization of PVDF membranes by vibrational spectroscopy. J Membr Sci 210:315–329CrossRefGoogle Scholar
  18. 18.
    Imamura R, Silva AB, Gregorio R Jr (2008) Gamma→beta phase transformation induced in poly(vinylidene fluoride) by stretching. J Appl Polym Sci 110:3242–3246CrossRefGoogle Scholar
  19. 19.
    Bormashenko Y, Pogreb R, Stanevsky O, Bormashenko E (2004) Vibrational spectrum of PVDF and its interpretation. Polym Test 23:791–796CrossRefGoogle Scholar
  20. 20.
    Esterly DM, Love BJ (2004) Phase transformation to beta-poly(vinylidene fluoride) by milling. J Polym Sci B 42:91–97CrossRefGoogle Scholar
  21. 21.
    Lanceros-Méndez S, Mano JF, Costa AM, Schmidt VH (2001) FTIR and DSC studies of mechanically deformed beta-PVDF films. J Macromol Sci, Phys B40:517–527CrossRefGoogle Scholar
  22. 22.
    Gregorio R, Capitao RC (2000) Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J Mater Sci 35:299–306CrossRefGoogle Scholar
  23. 23.
    Benz M, Euler WB (2003) Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J Appl Polym Sci 89:1093–1100CrossRefGoogle Scholar
  24. 24.
    Martines P, Lopes AC, L-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706CrossRefGoogle Scholar
  25. 25.
    Gregorio R, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci B 32:859–870CrossRefGoogle Scholar
  26. 26.
    Sencadas V, Moreira VM, Lanceros-Méndez S, Pouzada AS, Gregorio R (2006) Alpha-to-beta transformation on PVDF films obtained by uniaxial stretch. Mater Sci Forum 514:872–876CrossRefGoogle Scholar
  27. 27.
    Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Méndez S (2011) Nucleation of the electroactive β phase and enhancement of the optical transparency in low filler content poly(vinylidene)/clay nanocomposites. J Phys Chem C 115:18076–18082CrossRefGoogle Scholar
  28. 28.
    Martins P, Costa CM, Lanceros-Méndez S (2011) Nucleation of electroactive beta-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Appl Phys A 103:233–237CrossRefGoogle Scholar
  29. 29.
    Li L, Zhang M, Rong M, Ruan W (2014) Studies on the transformation process of PVDF from a to b phase by stretching. RSC Adv 4:3938–3943CrossRefGoogle Scholar
  30. 30.
    Salimi A, Yousefi AA (2003) FTIR studies of beta-phase crystal formation in stretched PVDF films. Polym Test 22:699–704CrossRefGoogle Scholar
  31. 31.
    Ribeiro C, Sencadas V, Gomez Ribelles JL, Lanceros-Méndez S (2010) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater 8:274–287CrossRefGoogle Scholar
  32. 32.
    Sencadas V, Gregorio R Jr, Lanceros-Méndez S (2009) Alpha to beta phase transformation and microstructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci, Part B: Phys 48:514–525CrossRefGoogle Scholar
  33. 33.
    Ferreira A, Costa P, Carvalho H, Nobrega JM, Sencadas V, Lanceros- Méndez S (2011) Extrusion of poly(vinylidene fluoride) filaments: effect of the processing conditions and conductive inner core on the electroactive phase content and mechanical properties. J Polym Res 18:1653–1658CrossRefGoogle Scholar
  34. 34.
    Sajkiewicz P, Wasiak A, Goclowski Z (1999) Phase transitions during stretching of poly(vinylidene fluoride). Eur Polym J 35:423–429CrossRefGoogle Scholar
  35. 35.
    El Mohajir BE, Heymans N (2001) Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer 42:5661–5667CrossRefGoogle Scholar
  36. 36.
    Pan H, Na B, Lv R, Li C, Zhu J, Yu Z (2012) Polar phase formation in poly(vinylidene fluoride) induced by melt annealing. J Polym Sci B 50:1433–1437CrossRefGoogle Scholar
  37. 37.
    Ince-Gunduz BS, Alpern R, Amare D, Crawford J, Dolan B, Jones S, Kobylarz R, Reveley M (2010) Impact of nanosilicates on poly(vinylidene fluoride) crystal polymorphism: part 1. Melt-crystallization at high supercooling. Polymer 51:1485–1493CrossRefGoogle Scholar
  38. 38.
    Yang DC, Chen Y (1987) Beta-phase formation of poly(vinylidene fluoride) from the melt induced by quenching. J Mater Sci Lett 6:599–603CrossRefGoogle Scholar
  39. 39.
    Gradys A, Sajkiewicz P, Adamovsky S, Minakov A, Schick C (2007) Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochim Acta 461:153–157CrossRefGoogle Scholar
  40. 40.
    Martins P, Caparros C, Gonçalves R, Martins PM, Benelmekki M, Botelho G, Lanceros-Mendez S (2012) Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C 116:15790–15794CrossRefGoogle Scholar
  41. 41.
    Buckley J, Cebe P, Cherdack D, Crawford J, Ince BS, Jenkins M, Pan NN, Reveley M, Washington N, Wolchover N (2006) Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47:2411–2422CrossRefGoogle Scholar
  42. 42.
    Patro TU, Mhalgi MV, Khakhar DV, Misra A (2008) Studies on poly(vinylidene fluoride)-clay nanocomposites: effect of different clay modifiers. Polymer 49:3486–3499CrossRefGoogle Scholar
  43. 43.
    He L, Sun J, Wang X, Wang C, Song R, Hao Y (2013) Facile and effective promotion of crystalline phase in poly(vinylidene fluoride) via the incorporation of imidazolium ionic liquids. Polym Int 62:638–646CrossRefGoogle Scholar
  44. 44.
    Henkel K, Lazareva I, Mandal D, Paloumpa I, Mueller K, Koval Y, Muller P, Schmeisser D (2009) Electrical investigations on metal/ferroelectric/insulator/semiconductor structures using poly vinylidene fluoride trifluoroethylene as ferroelectric layer for organic nonvolatile memory applications. J Vac Sci Technol B 27:504–507CrossRefGoogle Scholar
  45. 45.
    Wu Y, Hsu SL, Honeker C, Bravet DJ, Williams DS (2012) The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116:7379–7388CrossRefGoogle Scholar
  46. 46.
    Eswaraiah V, Balasubramaniam K, Ramaprabhu S (2012) One-pot synthesis of conducting graphene–polymer composites and their strain sensing application. Nanoscale 4:1258–1262CrossRefGoogle Scholar
  47. 47.
    Layek RK, Samanta S, Chatterjee DP, Nandi AK (2010) Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites: piezoelectric b polymorph formation. Polymer 51:5846–5856CrossRefGoogle Scholar
  48. 48.
    Kim HJ, Noor-A-Alam M, Son JY, Shin Y-H (2014) Origin of piezoelectricity in monolayer halogenated graphane piezoelectrics. Chem Phys Lett 603:62–66CrossRefGoogle Scholar
  49. 49.
    Shang J, Zhang Y, Yu L, Shen B, Lv F, Chu PK (2012) Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Mater Chem Phys 134:867–874CrossRefGoogle Scholar
  50. 50.
    El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide—PVDF nanocomposite films. Appl Surf Sci 258:7668–7677CrossRefGoogle Scholar
  51. 51.
    Rahman MA, Lee B-C, Phan D-T, Chung G-S (2013) Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites. Smart Mater Struct 22:1–10Google Scholar
  52. 52.
    Yu J, Jiang P, Wu C, Wang L, Wu X (2011) Graphene nanocomposites based on poly(vinylidene fluoride): structure and properties. Polym Compos 32:1483–1491. doi: 10.1002/pc.21106 CrossRefGoogle Scholar
  53. 53.
    Mohamadi S, Sharifi-Sanjani N (2011) Investigation of the crystalline structure of PVDF in PVDF/PMMA/graphene polymer blend nanocomposites. Polym Compos 32:1451–1460. doi: 10.1002/pc.21175 CrossRefGoogle Scholar
  54. 54.
    Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B 47:888–897CrossRefGoogle Scholar
  55. 55.
    Wang D, Bao Y, Zha J-W, Zhao J, Dang Z-M, Hu G-H (2012) Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl Mater Interfaces 4:6273–6279CrossRefGoogle Scholar
  56. 56.
    Shang J, Zhang Y, Yu L, Luan X, Shen B, Zhang Z, Lv F, Chu PK (2013) Fabrication and enhanced dielectric properties of graphene–polyvinylidene fluoride functional hybrid films with a polyaniline interlayer. J Mater Chem A 1:884–890CrossRefGoogle Scholar
  57. 57.
    Kwon J, Sharma BK, Ahn J-H (2013) Graphene based nanogenerator for energy harvesting. Jpn J Appl Phys 52:1–9Google Scholar
  58. 58.
    Wu L, Alamusi, Xue J, Itoi T, Hu N, Li Y, Yan C, Qiu J, Ning H, Yuan W, Gu B (2014) Improved energy harvesting capability of poly(vinylidene fluoride) films modified by reduced graphene oxide. J Intell Mater Syst Struct 25(14):1813–1824CrossRefGoogle Scholar
  59. 59.
    Li Y, Xu J-Z, Zhu L, Zhong G-J, Li Z-M (2012) Role of ion−dipole interactions in nucleation of gamma poly(vinylidene fluoride) in the presence of graphene oxide during melt crystallization. J Phys Chem B 116:14951–14960CrossRefGoogle Scholar
  60. 60.
    Alamusi, Xue JM, Wu LK, Hu N, Qiu J, Chang C, Atobe S, Fukunaga H, Watanabe T, Liu YL, Ning HM, Li JH, Li Y, Zhao Y (2012) Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly(vinylidene fluoride) nanocomposites. Nanoscale 4:7250–7255CrossRefGoogle Scholar
  61. 61.
    Liu ZH, Pan CT, Lin LW, Lai HW (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors Actuators A 193:13–24CrossRefGoogle Scholar
  62. 62.
    Lund A, Gustafsson C, Bertilsson H, Rychwalski RW (2011) Enhancement of b phase crystals formation with the use of nanofillers in PVDF films and fibres. Compos Sci Technol 71:222–229CrossRefGoogle Scholar
  63. 63.
    Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42:8870–8874CrossRefGoogle Scholar
  64. 64.
    Glau B, Steinmann W, Walter S, Beckers M, Seide G, Gries T, Roth G (2013) Spinnability and characteristics of polyvinylidene fluoride (PVDF)-based bicomponent fibers with a carbon nanotube (CNT) modified polypropylene core for piezoelectric applications. Materials 6:2642–2661CrossRefGoogle Scholar
  65. 65.
    Qu ZY, Liu ZH, Pan CT, Lin LW, Chen YJ, Lai HW. Study on piezoelectric properties of near-field electrospinning PVDF/MWCNT nano-fiber, NEMS 2012, Kyoto, Japan, 5–8 March 2012, pp 125–128Google Scholar
  66. 66.
    Dror Y, Salalha W, Khalfin R, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19:7012–7020CrossRefGoogle Scholar
  67. 67.
    Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126:15754–15761CrossRefGoogle Scholar
  68. 68.
    Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA, Giannelis ER (2004) Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater 16:1173–1177CrossRefGoogle Scholar
  69. 69.
    Priya L, Jog JP (2002) Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies. J Polym Sci B 40:1682–1689CrossRefGoogle Scholar
  70. 70.
    Ahn Y, Lim J, Hong SM, Lee J, Ha J, Choi HJ, Seo Y (2013) Enhanced piezoelectric properties of electrospun PVDF/MWCNT composites due to high β phase formation in PVDF. J Phys Chem C 117:11791–11799CrossRefGoogle Scholar
  71. 71.
    Li B, Zheng J, Xu C. Silver nanowire dopant enhancing piezoelectricity of electrospun PVDF nanofiber web, Electro active polymers, Proc. SPIE 8793, Fourth International Conference on Smart Materials and Nanotechnology in Engineering, 879314 (9 August 2013). doi: 10.1117/12.2026758
  72. 72.
    Liu YL, Ying Li Y, Xu J-T, Fan Z-Q (2010) Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly(vinylidene fluoride). ACS Appl Mater Interfaces 2:1759–1768CrossRefGoogle Scholar
  73. 73.
    Piezoelectric ceramics: principles and applications. APC International LtdGoogle Scholar
  74. 74.
    Jia Y, Chen X, Ni Q, Li L, Ju C (2013) Dependence of the impact response of polyvinylidene fluoride sensors on their supporting materials’ elasticity. Sensors 13:8669–8678CrossRefGoogle Scholar
  75. 75.
    Kim GH, Hong SM, Seo Y (2009) Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys Chem Chem Phys 11:10506–10512CrossRefGoogle Scholar
  76. 76.
    Pu J, Yan X, Jiang Y, Chang C, Lin L (2010) Piezoelectric actuation of direct-write electrospun fibers. Sensors Actuators A 164:131–136CrossRefGoogle Scholar
  77. 77.
    Yousefi AA (2011) Hybrid polyvinylidene fluoride/nanoclay/MWCNT nanocomposites: PVDF crystalline transformation. Iran Polym J 29:725–733Google Scholar
  78. 78.
    Chang C, Fuh Y-K, Lin LW (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731CrossRefGoogle Scholar
  79. 79.
    Chang C, Tran VH, Wang J, Fuh Y-K, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731CrossRefGoogle Scholar
  80. 80.
    Sharma M, Madras G, Bose S (2014) Process induced electroactive b-polymorph in PVDF: effect on dielectric and ferroelectric properties. Phys Chem Chem Phys 16:14792–14799CrossRefGoogle Scholar
  81. 81.
    Cauda V, Stassi S, Bejtka K, Canavese G (2013) Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. ACS Appl Mater Interfaces 5:6430–6437CrossRefGoogle Scholar
  82. 82.
    Gregorio R, Ueno EM (1999) Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J Mater Sci 34:4489–44500CrossRefGoogle Scholar
  83. 83.
    Silva MP, Costa CM, Sencadas V, Paleo AJ, Lanceros-Méndez S (2011) Degradation of the dielectric and piezoelectric response of poly(vinylidene fluoride) after temperature annealing. J Polym Res 18:1451–1457CrossRefGoogle Scholar
  84. 84.
    Tang C-T, Li B, Sun L, Lively B, Zhong W-H (2012) The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. Eur Polym J 48:1062–1072CrossRefGoogle Scholar
  85. 85.
    Baji A, Mai Y-W, Abtahi M, Wong S-C, Liu Y, Li Q (2013) Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity. Compos Sci Technol 88:1–8CrossRefGoogle Scholar
  86. 86.
    Huang X, Jiang P, Kim C, Liu F, Yin Y (2009) Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). Eur Polym J 45:377–386CrossRefGoogle Scholar
  87. 87.
    Dagdeviren C, Papila M (2010) Dielectric behavior of fibrous-ZnO/PVDF nanocomposite. Polym Compos 31:1003–1010CrossRefGoogle Scholar
  88. 88.
    Li Y, Hu J, He J, Gao L. The graphene oxide polymer composites with high breakdown field strength and energy storage ability. In: Oral AY et al (eds) International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013), Springer Proceedings in Physics 155, pp 431–438. doi: 10.1007/978-3-319-05521-3_55
  89. 89.
    Wang J, Wu J, Xu W, Zhang Q, Fu Q (2014) Preparation of poly(vinylidene fluoride) films with excellent electric property, improved dielectric property and dominant polar crystalline forms by adding a quaternary phosphorus salt functionalized graphene. Compos Sci Technol 91:1–7CrossRefGoogle Scholar
  90. 90.
    Li B, Xu C, Zheng J, Xu C (2014) Sensitivity of pressure sensors enhanced by doping silver nanowires. Sensors 14:9889–9899CrossRefGoogle Scholar
  91. 91.
    Lee B-S, Park B, Yang H-S, Han JW, Choong C, Bae J, Lee K, Yu W-R, Jeong U, Chung U-I, Park J-J, Kim O (2014) Effects of substrate on piezoelectricity of electrospun poly(vinylidene fluoride)-nanofiber-based energy generators. ACS Appl Mater Interfaces 6:3520–3527CrossRefGoogle Scholar
  92. 92.
    Xu J, Dapinoa MJ, Gallego Perez D, Hansford D (2009) Microphone based on polyvinylidene mahapatrafluoride (PVDF) micro-pillars and patterned electrodes. Sensors Actuators A Phys 153:24–32CrossRefGoogle Scholar
  93. 93.
    Toda M, Dahl J (2007) PVDF corrugated transducer for ultrasonic ranging sensor. Sensors Actuators A Phys 134:427–435CrossRefGoogle Scholar
  94. 94.
    Rathod VT, Mahapatra DR, Jain A, Gayathri A (2010) Characterization of a large-area PVDF thin film for electromechanical and ultrasonic sensing applications. Sensors Actuators A Phys 163:164–171CrossRefGoogle Scholar
  95. 95.
    Seminara L, Capurro M, Cirillo P, Cannata G, Valle M (2011) Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sensors Actuators A Phys 169:49–58CrossRefGoogle Scholar
  96. 96.
    Dahiya RS, Valle M, Metta G, Lorenzelli L, Adami A. Design and fabrication of posfet devices for tactile sensing. In: Proceedings of the International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Denver, CO, 21–25 June 2009, 1881–1884Google Scholar
  97. 97.
    Tsuchimi D, Okuyama T, Tanaka M. Development of a haptic sensor system for monitoring human skin conditions. In: Proceedings of the 13th International Conference on Biomedical Engineering, Singapore, 3–6 December 2008, pp 2219–2222Google Scholar
  98. 98.
    Matsunaga N, Zengin AT, Kawaji S. Evaluation of multilayered pain sensor model of human skin. In: Proceedings of the ICROS-SICE International Joint Conference, Fukuoka, Japan, 18–21 August 2009, pp 3840–3845Google Scholar
  99. 99.
    Gao G, Wang Z, Gao R (1990) A PVDF film sensor for material identification. Sensors Actuators A Phys 23:886–889CrossRefGoogle Scholar
  100. 100.
    Kimoto A, Sugitani N (2010) A new sensing method based on PVDF film for material identification. Meas Sci Technol. doi: 10.1088/0957-0233/21/7/075202 Google Scholar
  101. 101.
    Chuang CH, Liou YR, Chen CW (2012) Detection system of incident slippage and friction coefficient based on a flexible tactile sensor with structural electrodes. Sensors Actuators A Phys 188:48–55CrossRefGoogle Scholar
  102. 102.
    Wang YR, Zheng JM, Ren GY, Zhang PH, Xu C (2011) A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater Struct 20:045009 (1–7)Google Scholar
  103. 103.
    Merlini C, Almeida RS, D’Ávila MA, Schreiner WH, Barra GMO (2014) Development of a novel pressure sensing material based on polypyrrole-coated electrospun poly(vinylidene fluoride) fibers. Mater Sci Eng B 179:52–59CrossRefGoogle Scholar
  104. 104.
    Ferreira A, Rocha JG, Ansón-Casaos A, Martínez MT, Vaz F, Lanceros-Mendez S (2012) Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sensors Actuators A 178:10–16CrossRefGoogle Scholar
  105. 105.
    Sharma T, Naik S, Langevine J, Gill B, Zhang JX (2015) Aligned PVDF-TrFE nanofibers with high-density PVDF nanofibers and PVDF core–shell structures for endovascular pressure sensing. IEEE Trans Biomed Eng 62:188–195CrossRefGoogle Scholar
  106. 106.
    Jeon JH, Kang SP, Lee S, Oh I-K (2009) Novel biomimetic actuator based on SPEEK and PVDF. Sensors Actuators B 143:357–364CrossRefGoogle Scholar
  107. 107.
    Kim S-S, Kee C-D (2014) Electro-active polymer actuator based on PVDF with bacterial cellulose nano-whiskers (BCNW) via electrospinning method. Int J Precis Eng Manuf 15:315–321CrossRefGoogle Scholar
  108. 108.
    Mahale BP, Gangal SA, Bodas DS. PVDF based micro actuator, Physics and Technology of Sensors (ISPTS), 2012 1st International Symposium on 2012, pp 59–62Google Scholar
  109. 109.
    Fu Y, Harvey EC, Ghantasala MK, Spinks GM (2006) Design, fabrication and testing of piezoelectric polymer PVDF microactuators, Smart Mater Struct 15. doi: 10.1088/0964-1726/15/1/023
  110. 110.
    Lu J, Kim S-G, Lee S, Oh Il-K (2008) Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF. Smart Mater Struct 17. doi: 10.1088/0964-1726/17/4/045002
  111. 111.
    Pascal RJ (1999) Actuator and sensor design and modeling for structural acoustic control. PhD Dissertation, Department of Aeronautics and Astronautics, Massachusettes Institute of TechnologyGoogle Scholar
  112. 112.
    Lee JS, Shin KY, Kim C, Jang J (2013) Enhanced frequency response of a highly transparent PVDF–graphene based thin film acoustic actuator. Chem Commun 49:11047–11049CrossRefGoogle Scholar
  113. 113.
    Kowbel W, Xia X, Withers JC, Crocker MJ, Wada BK. PZT/PVDF flexible composites for actuator and sensor applications. In: Proc. SPIE 3324, Smart Structures and Materials 1998: Smart Materials Technologies 1998, 106. doi: 10.1117/12.316853
  114. 114.
    Mateu L, Moll F (2005) Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J Intell Mater Syst Struct 16:835–845CrossRefGoogle Scholar
  115. 115.
    Huang T, Wang C, Yu H, Wang H, Zhang Q, Zhu M. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers, Nano Energy.
  116. 116.
    Granstrom J, Feenstra J, Sodano HA, Farinholt K (2007) Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct 16:1810–1820CrossRefGoogle Scholar
  117. 117.
    Lallart M, Cottinet PJ, Lebrun L, Guiffard B, Guyomar D (2010) Evaluation of energy harvesting performance of electrostrictive polymer and carbon-filled terpolymer composites. J Appl Phys 108:034901CrossRefGoogle Scholar
  118. 118.
    Vatansever D, Hadimani RL, Shah T, Siores E (2011) An investigation of energy harvesting from renewable sources with PVDF and PZT. Smart Mater Struct 20:055019CrossRefGoogle Scholar
  119. 119.
    Sohn JW, Choi SB, Lee DY (2003) An investigation on piezoelectric energy harvesting for MEMS power sources. J Mech Eng Sci 219:429–436CrossRefGoogle Scholar
  120. 120.
    Fang J, Niu H, Wang H, Wang X, Lin T (2013) Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ Sci 6:2196–2202CrossRefGoogle Scholar
  121. 121.
    Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J Mater Chem 21:11088–11091CrossRefGoogle Scholar
  122. 122.
    Xue X, Wang S, Guo W, Zhang Y, Wang ZL (2012) Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett 12:5048–5054CrossRefGoogle Scholar
  123. 123.
    Zhao Y, Liao Q, Zhang G, Zhang Z, Liang Q, Liao X, Zhang Y (2015) High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11:719–727CrossRefGoogle Scholar
  124. 124.
    Park T, Kim B, Kim Y, Kim E (2014) Highly conductive PEDOT electrodes for harvesting dynamic energy through piezoelectric conversion. J Mater Chem A 2:5462–5469CrossRefGoogle Scholar
  125. 125.
    Zi Y, Lin L, Wang J, Wang S, Chen J, Fan X, Yang PK, Yi F, Wang ZL (2015) Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv Mater 27:2340–2347CrossRefGoogle Scholar
  126. 126.
    Yang Y, Zhang H, Zhu G, Lee S, Lin Z-H, Wang ZL (2013) Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7:785–790CrossRefGoogle Scholar
  127. 127.
    Shukla R, Bell AJ (2015) PENDEXE: a novel energy harvesting concept for low frequency human waistline. Sensors Actuators A 222:39–47CrossRefGoogle Scholar
  128. 128.
    Lee M, Chen C-Y, Wang S, Cha SN, Park YJ, Kim JM, Chou L-J, Wang ZL (2012) A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:1759–1764CrossRefGoogle Scholar
  129. 129.
    Pi Z, Zhang J, Wen C, Zhang Z-B, Wu D (2014) Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film. Nano Energy 7:33–41CrossRefGoogle Scholar
  130. 130.
    Sun C, Shi J, Bayerl DJ, Wang X (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ Sci 4:4508–4512CrossRefGoogle Scholar
  131. 131.
    Hu HP, Zhao C, Feng SY, Hu YT, Chen CY (2008) Adjusting the resonant frequency of a PVDF bimorph power harvester through a corrugation-shaped harvesting structure. IEEE Trans Ultrason Ferroelectr Freq Control 55:668–674CrossRefGoogle Scholar
  132. 132.
    Liu YM, Tian G, Wang Y, Lin JH, Zhang QM, Hofmann HF (2009) Active piezoelectric energy harvesting: general principle and experimental demonstration. J Intell Mater Syst Struct 20:575–585Google Scholar
  133. 133.
    Hansen BJ, Liu Y, Yang R, Wang ZL (2010) Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. Am Chem Soc 4:3647–3652Google Scholar
  134. 134.
    Liu WT, Cheng XY, Fu X, Stefanini C, Dario P (2011) Preliminary study on development of PVDF nanofiber based energy harvesting device for an artery microrobot. Microelectron Eng 88:2251–2254CrossRefGoogle Scholar
  135. 135.
    Oh SJ, Han HJ, Han SB, Lee JY, Chun WG (2010) Development of a tree-shaped wind power system using piezoelectric materials. Int J Energy Res 34:431–437CrossRefGoogle Scholar
  136. 136.
    Mandal D, Yoon S, Kim KJ (2011) Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol Rapid Commun 32:831–837CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nanotechnology Research CenterIslamic Azad UniversityTehranIran
  2. 2.Department of Textile Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations