Polyurethane-Based Smart Polymers

  • Norazwani Muhammad ZainEmail author
  • Syazana Ahmad Zubir


Polyurethane is a highly versatile polymer that may be used in various types of applications with a wide range of properties. The combination of different types and ratios of isocyanate and polyol allows for the control of the desired end properties. Due to its unique properties, it has found applications in the fields of medical, military, automobile, and aerospace industries. Recently, there has been a prodigious interest in producing polyurethane-based smart polymers, especially shape memory polyurethane (SMPU). This is due to its excellent ability to change shape upon the application of external stimuli such as heat, electric field, magnetic field, and light. The existence of phase-separated structure known as soft- and hard-segment domains contributes toward the shape memory properties of polyurethane. The soft-segment domains are responsible for maintaining the temporary shape, while hard segments fix the permanent shape. This chapter comprehensively aims to address a wide overview of polyurethane-based smart polymer and the chemistry behind the shape memory properties. In addition, this chapter also summarizes the recent studies on the exploration of SMPU using vegetable oils along with petroleum-based polyol and the potential applications of smart polyurethane.


Smart polymers Polyurethane Vegetable oil based Shape memory 


  1. 1.
    Hepburn C (1982) Polyurethane elastomers. Applied Science, LondonGoogle Scholar
  2. 2.
    Oertel G (1985) Polyurethane handbook. Hanser Publishers, MunichGoogle Scholar
  3. 3.
    Petrovic ZS (2005) Polyurethanes. In: Kricheldorf HR, Nuyken O, Swift G (eds) Handbook of polymer synthesis, 2nd edn. Marcel Dekker, New York, NYGoogle Scholar
  4. 4.
    Lamba NMK, Cooper SL, Woodhouse KA (1998) Polyurethanes in biomedical applications. CRC Press, New York, NYGoogle Scholar
  5. 5.
    Wright P, Cumming APC (1969) Solid polyurethane elastomers. Maclaren and Sons, LondonGoogle Scholar
  6. 6.
    Thomson T (2005) Polyurethanes as specialty chemicals; principles and applications. CRC Press, Boca Raton, FLGoogle Scholar
  7. 7.
    Ionescu M (2005) Chemistry and technology of polyols for polyurethanes. Rapra Technology Limited, ShropshireGoogle Scholar
  8. 8.
    Schneberger GL (1983) Adhesives in manufacturing. Marcel Dekker, New York, NYGoogle Scholar
  9. 9.
    Jenkins MJ, Harrison KL (2006) Polym Adv Technol 17:474–478CrossRefGoogle Scholar
  10. 10.
    Labet M, Thielemans W (2009) Chem Soc Rev 38:3484–3504CrossRefGoogle Scholar
  11. 11.
    Tanaka R, Hirose S, Hatakeyama H (2008) Bioresour Technol 99:3810–3816CrossRefGoogle Scholar
  12. 12.
    Lee CS, Lee SC (2010) Am J Pharmacol Toxicol 5:133–138CrossRefGoogle Scholar
  13. 13.
    Badri KH, Ahmad SH, Zakaria S (2001) J Appl Polym Sci 81:384–389CrossRefGoogle Scholar
  14. 14.
    Clemitson IR (2008) Castable polyurethane elastomers. CRC Press, New York, NYCrossRefGoogle Scholar
  15. 15.
    Hepburn C (1992) Polyurethane elastomers. Elsevier, New York, NYCrossRefGoogle Scholar
  16. 16.
    Cho JW, Goo NS, Jung YC, Kim JW (2005) Macromol Rapid Commun 26:412–416CrossRefGoogle Scholar
  17. 17.
    Prisacariu C (2011) Polyurethane elastomers: from morphology to mechanical aspects. Springer, New York, NYCrossRefGoogle Scholar
  18. 18.
    Meng KC, Young RJ (1989) Pengantar polimer. Dewan Bahasa & Pustaka, Kuala LumpurGoogle Scholar
  19. 19.
    Lendlein A, Kelch S (2002) Reviews: Shape memory polymers. Angew Chem Int Ed 41:2034–2057CrossRefGoogle Scholar
  20. 20.
    Lendlein A (2010) Shape-memory polymers. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Liu C, Mather PT, Qin H (2007) J Mater Chem 17:1543–1558CrossRefGoogle Scholar
  22. 22.
    Pretsch T (2010) Polymer 2:120–158CrossRefGoogle Scholar
  23. 23.
    Leng J, Du S (2010) Shape-memory polymers and multifunctional composites. CRC Press, New York, NYCrossRefGoogle Scholar
  24. 24.
    Hu J (2007) Shape memory polymers and textiles. Woodhead Publishing Limited, CambridgeCrossRefGoogle Scholar
  25. 25.
    Zhang L, Huang M, Yu R, Huang J, Dong X, Zhang R, Zhu J (2014) J Mater Chem A 2:11490–11498CrossRefGoogle Scholar
  26. 26.
    Zhang C, Madbouly SA, Kessler MR (2015) ACS Appl Mater Interfaces 7:1226–1233CrossRefGoogle Scholar
  27. 27.
    Wang HH, Yuen UE (2006) J Appl Polym Sci 102:607–615CrossRefGoogle Scholar
  28. 28.
    Chun BC, Cho TK, Chung YC (2006) Eur Polym J 42:3367–3373CrossRefGoogle Scholar
  29. 29.
    Jeong HM, Lee SY, Kim BK (2000) J Mater Sci 35:1579–1583CrossRefGoogle Scholar
  30. 30.
    Ji FL, Hu JL, Li TC, Wong YW (2007) Polymer 48:5133–5145CrossRefGoogle Scholar
  31. 31.
    Meng Q, Hu J, Zhu Y (2008) J Biomater Sci Polym Ed 19(11):1437–1454CrossRefGoogle Scholar
  32. 32.
    Wang W, Ping P, Chen X, Jing X (2007) Polym Inter 56:840–846CrossRefGoogle Scholar
  33. 33.
    Ahmad M, Luo J, Xu B, Purnawali H, King PJ, Chalker PR, Fu Y, Huang W, Miraftab M (2011) Macromol Chem Phys 212:592–602CrossRefGoogle Scholar
  34. 34.
    Lin JR, Chen LW (1999) J Appl Polym Sci 73:1305–1319CrossRefGoogle Scholar
  35. 35.
    Chung YC, Kim WS, Cho TK, Chun BC (2008) Fibers Polym 9(4):388–392CrossRefGoogle Scholar
  36. 36.
    Lee SH, Kim JW, Kim BK (2004) Smart Mater Struct 13:1345–1350CrossRefGoogle Scholar
  37. 37.
    Buckley CP, Prisacariu C, Caraculacu A (2007) Polymer 48:1388–1396CrossRefGoogle Scholar
  38. 38.
    Feng Y, Xue Y, Guo J, Cheng L, Jiao L, Zhang Y, Yue J (2009) J Appl Polym Sci 112:473–478CrossRefGoogle Scholar
  39. 39.
    Azra C, Ding Y, Plummer CJG, Månson JAE (2013) Eur Polym J 49:184–193CrossRefGoogle Scholar
  40. 40.
    Chung YC, Choi JH, Chun BC (2008) J Mater Sci 43:6366–6373CrossRefGoogle Scholar
  41. 41.
    Chung YC, Choi JW, Moon S, Chun BC (2009) Fibers Polym 10(4):430–436CrossRefGoogle Scholar
  42. 42.
    Chung YC, Chun BC, Lee SD, Park JS (2010) J Appl Polym Sci 115:3568–3575CrossRefGoogle Scholar
  43. 43.
    Chung YC, Nguyen DK, Choi JW, Chun BC (2010) Fibers Polym 11(7):952–959CrossRefGoogle Scholar
  44. 44.
    Cao Q, Liu P (2006) Polym Bull 57:889–899CrossRefGoogle Scholar
  45. 45.
    Sivakumar C, Nasar AS (2009) Eur Polym J 45:2329–2337CrossRefGoogle Scholar
  46. 46.
    Kalita H, Karak N (2014) J Appl Polym Sci 131. doi: 10.1002/app.39579
  47. 47.
    Kalita H, Karak N (2012) Polym Eng Sci 52:2454–2461CrossRefGoogle Scholar
  48. 48.
    Fernandez AM, Abraham GA, Valentin JL, Roman JS (2005) Polymer 47:785–798CrossRefGoogle Scholar
  49. 49.
    Ajili SH, Ebrahimi NG, Soleimani M (2009) Acta Biomater 5:1519–1530CrossRefGoogle Scholar
  50. 50.
    Deka H, Karak N, Kalita RD, Buragohain AK (2010) Carbon 48:2013–2022CrossRefGoogle Scholar
  51. 51.
    D’hollander S, Assche GV, Mele BV, Preza FD (2009) Polymer 50:4447–4454CrossRefGoogle Scholar
  52. 52.
    Gu X, Mather PT (2012) Polymer 53:5924–5934CrossRefGoogle Scholar
  53. 53.
    Dow launches soy-based polyol, joining a growing field. Plastics Today. (Last Accessed: May 2015)
  54. 54.
    Xu J, Shi W, Pang W (2006) Polymer 47:457–465CrossRefGoogle Scholar
  55. 55.
    Guner FS, Yagci Y, Erciyes AT (2006) Prog Polym Sci 31:633–670CrossRefGoogle Scholar
  56. 56.
    Sonnenschein MF, Ginzburg VV, Schiller KS, Wendt BL (2013) Polymer 54:1350–1360CrossRefGoogle Scholar
  57. 57.
    Zlatanic A, Lava C, Zhang W, Petrovic ZS (2004) J Polym Sci B Polym Phys 42:809–819CrossRefGoogle Scholar
  58. 58.
    Bueno-Ferrer C, Hablot E, Garrigós MC, Bocchini S, Averous L, Jiménez A (2012) Polym Deg Stab 97:1964–1969CrossRefGoogle Scholar
  59. 59.
    Ferrer MCC, Babb D, Ryan AJ (2008) Polymer 49:3279–3287CrossRefGoogle Scholar
  60. 60.
    Li F, Larock RC (2002) J Appl Polym Sci 84:1533–1543CrossRefGoogle Scholar
  61. 61.
    Corcuera MA, Saralegi A, Fernandez-d’Arlas B, Mondragon I, Eceiza A (2012) Macromol Symp 321–322:197–201CrossRefGoogle Scholar
  62. 62.
    Saralegi A, Fernandes SCM, Alonso-Varona A, Palomares T, Foster EJ, Weder C, Eceiza A, Corcuera MA (2013) Biomacromolecules 14:4475–4482CrossRefGoogle Scholar
  63. 63.
    Saralegi A, Gonzalez ML, Valea A, Eceiza A, Corcuera MA (2014) Composites Sci Technol 92:27–33CrossRefGoogle Scholar
  64. 64.
    Rio ED, Lligadas G, Ronda JC, Galia M, Meier MAR, Cadiz V (2010) J Polym Sci A Polym Chem 49:518–525CrossRefGoogle Scholar
  65. 65.
    Miao S, Wang P, Su Z, Liu Y, Zhang S (2012) Eur J Lipid Sci Technol 114:1345–1351CrossRefGoogle Scholar
  66. 66.
    Miao S, Callow N, Wang P, Liu Y, Su Z, Zhang S (2013) J Am Oil Chem Soc 90:1415–1421CrossRefGoogle Scholar
  67. 67.
    Petrovic ZS (2008) Polym Rev 48(5):109–155CrossRefGoogle Scholar
  68. 68.
    Zhang C, Li Y, Chen R, Kessler MR (2014) ACS Sustain Chem Eng 2:2465–2476CrossRefGoogle Scholar
  69. 69.
    Miao S, Sun L, Wang P, Liu R, Su Z, Zhang S (2012) Eur J Lipid Sci Technol 114:1165–1174CrossRefGoogle Scholar
  70. 70.
    Das B, Konwar U, Mandal M, Karak N (2013) Ind Crops Prod 44:396–404CrossRefGoogle Scholar
  71. 71.
    Miao S, Zhang S, Su Z, Wang P (2013) J Appl Polym Sci 127:1929–1936CrossRefGoogle Scholar
  72. 72.
    Saralegi A, Rueda L, Fernandez-d’Arlas B, Mondragon I, Eceiza A, Corcuera MA (2013) Polym Int 62:106–115CrossRefGoogle Scholar
  73. 73.
    Yaganeh H, Talemi PH (2007) Polym Deg Stab 92:480–489CrossRefGoogle Scholar
  74. 74.
    Hojabri L, Kong X, Narine SS (2009) Biomacromolecules 10:884–891CrossRefGoogle Scholar
  75. 75.
    Wirpsza Z (1993) Polyurethanes: chemistry, technology and applications. Ellis Horwood, New York, NYGoogle Scholar
  76. 76.
    Mondal S, Hu JL, Liu Y, Szeto YS, Yang Z (2002) Res J Textile Apparel 6:75–83CrossRefGoogle Scholar
  77. 77.
    Yakacki CM, Eckstein A, Gall K, Lanning C, Rech B, Shandas R (2007) Biomaterials 28:2255–2263CrossRefGoogle Scholar
  78. 78.
    Lendlein A, Langer R (2002) Science 296:1673–1675CrossRefGoogle Scholar
  79. 79.
    Montemor MF (2014) Surf Coat Technol 258:17–37CrossRefGoogle Scholar
  80. 80.
    Gu S, Liu L, Ren J, Yan B (2013) Eur Polym J 49:3867–3877CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Norazwani Muhammad Zain
    • 1
    Email author
  • Syazana Ahmad Zubir
    • 2
  1. 1.Fabrication and Joining SectionUniversiti Kuala Lumpur Malaysia France InstituteBandar Baru BangiMalaysia
  2. 2.School of Materials and Mineral Resources Engineering, Universiti Sains MalaysiaSeberang Perai SelatanMalaysia

Personalised recommendations