Designing Self-Healing Polymers by Atom Transfer Radical Polymerization and Click Chemistry

  • Bhaskar Jyoti Saikia
  • Dhaneswar Das
  • Pronob Gogoi
  • Swapan Kumar DoluiEmail author


The development of smart self-healing polymeric materials and composites has been the subject of a tremendous amount of research over last few years. When self-healing materials are mechanically damaged, either internally (via crack formation) or externally (by scratching), they have the ability of restoring their original strength and recovering their inherent properties. For polymers to exhibit such a healing ability, they must contain some functionality which will either rebound among themselves or have the ability of coupling with other functionalities. Preparation of such multifunctional and well-defined macromolecules requires a smart selection of a controlled polymerization technique in combination with appropriate coupling reactions. Among all the polymerization techniques introduced so far, atom transfer radical polymerization (ATRP) is the most versatile owing to its exceptional properties like preparation of polymer with predetermined molecular weight, narrow polydispersity index, predetermined chain-end functionality, and tunable architecture. Click chemistry is an extremely powerful coupling approach which in combination with ATRP can be used for generation of polymers with almost all of the desired properties. In this chapter, an overview on the use of ATRP and click chemistry for polymerization of various “clickable” monomers using “clickable” ATRP initiators is provided along with other post-polymerization modification strategies that can be used to construct macromolecules with self-healing ability.


Self-healing polymers ATRP Click chemistry 


  1. 1.
    Chen X, Dam M, Ono A, Mal K, Shen A, Nutt H, Sheran SR, Wudl K (2002) Science 295:1698CrossRefGoogle Scholar
  2. 2.
    Chen X, Wudl F, Mal A, Shen H, Nutt SR, Sheran K (2003) Macromolecules 36:1802CrossRefGoogle Scholar
  3. 3.
    White SR, Sottos NR, Guebelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Nature 409:794CrossRefGoogle Scholar
  4. 4.
    Nathalie K, Guimard K, Kim O, Jiawen Z, Stefan H, Friedrich GS, Christopher BK (2012) Macromol Chem Phys 213:131CrossRefGoogle Scholar
  5. 5.
    Brown EN, Sottos NR, White SR (2002) Exp Mech 42:372CrossRefGoogle Scholar
  6. 6.
    Keller MW, White SR, Sottos NR (2007) Adv Funct Mater 17:2399CrossRefGoogle Scholar
  7. 7.
    Guan Z, Roland JT, Bai JZ, Ma SX, McIntire TM, Nguyen M (2004) J Am Chem Soc 126:2058CrossRefGoogle Scholar
  8. 8.
    Varley RJ, Zwaag VD (2008) Polym Test 27:11CrossRefGoogle Scholar
  9. 9.
    Tadano K, Hirasawa E, Yamamoto H, Yano S (1989) Macromolecules 22:226CrossRefGoogle Scholar
  10. 10.
    Zare P, Mahrova M, Tojo E, Stojanovic A, Binder WH (2013) J Polym Sci A Polym Chem 51:190CrossRefGoogle Scholar
  11. 11.
    Gragert M, Schunack M, Binder WH (2011) Macromol Rapid Commun 32:419CrossRefGoogle Scholar
  12. 12.
    Saiki BJ, Gogoi P, Sharmah S, Dolui SK (2015) Polym Int 64:437CrossRefGoogle Scholar
  13. 13.
    Matyjaszewski K (2012) Macromolecules 45:4015CrossRefGoogle Scholar
  14. 14.
    Quirk P, Kim J (1991) Rubber Chem Technol 64:450CrossRefGoogle Scholar
  15. 15.
    Zhang L, Liu W, Lin L, Chen D, Stenzel MH (2008) Biomacromolecules 9:3321CrossRefGoogle Scholar
  16. 16.
    Laurent BA, Grayson SM (2006) J Am Chem Soc 128:4238CrossRefGoogle Scholar
  17. 17.
    Van Camp W, Germonpre V, Mespouille L, Dubois P, Goethals EJ, Du Prez FE (2007) React Funct Polym 67:1168CrossRefGoogle Scholar
  18. 18.
    Durmaz H, Karatas F, Tunca U, Hizal G (2006) J Polym Sci A Polym Chem 44:3947CrossRefGoogle Scholar
  19. 19.
    Mantovani G, Lecolley F, Tao L, Haddleton DM, Clerx J, Cornelissen JJLM, Velonia K (2005) J Am Chem Soc 127:2966CrossRefGoogle Scholar
  20. 20.
    Gao H, Matyjaszewski K (2006) Macromolecules 39:4960CrossRefGoogle Scholar
  21. 21.
    White SR, Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR (2011) Am Sci 99:392Google Scholar
  22. 22.
    Murphy EB, Wudl F (2010) Prog Polym Sci 35:223CrossRefGoogle Scholar
  23. 23.
    Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Annu Rev Mater Res 40:179CrossRefGoogle Scholar
  24. 24.
    Zhang MQ, Rong MZ (2012) Sci China Chem 55:648CrossRefGoogle Scholar
  25. 25.
    Müller M, Dardin A, Seidel U, Balsamo V, Iván B, Spiess HW, Stadler R (1996) Macromolecules 29:2577CrossRefGoogle Scholar
  26. 26.
    Greenland BW, Burattini S, Hayes W, Colquhoun HM (2008) Tetrahedron Lett 64:8346CrossRefGoogle Scholar
  27. 27.
    Kalista SJ, Ward TC, Oyetunji Z (2007) Mech Adv Mater Struct 14:391CrossRefGoogle Scholar
  28. 28.
    Chen Y, Kushner AM, Williams GA, Guan Z (2012) Nat Chem 4:467CrossRefGoogle Scholar
  29. 29.
    Rahman MdA, Penco M, Spagnoli G, Peroni I, Ramorino G (2012) AIP Conf Proc 163:1459Google Scholar
  30. 30.
    Hart LR, Nguyen NA, Harries JL, Mackay ME, Colquhoun HM, Hayes W. doi: 10.1016/j.polymer.2015.03.028
  31. 31.
    Hohlbein N, Pelzer T, Nothacker J, von Tapavicza M, Nellesen A, Datta H, Schmidt AM (2013) ‘Self-healing processes in ionomeric elastomers’, ICSHM, 680.Google Scholar
  32. 32.
    Tasdelen MA (2011) Polym Chem 2:2133CrossRefGoogle Scholar
  33. 33.
    Kötteritzsch J, Hager MD, Schubert US (2013) One-component intrinsic self-healing polymer for coatings based on reversible crosslinking by Diels-Alder-cycloadditions, ICSHM, 624Google Scholar
  34. 34.
    Yang J, Keller MW, Moore JS, White SR, Sottos NR (2008) Macromolecules 41:9650CrossRefGoogle Scholar
  35. 35.
    Ghosh D, Sharman R, Rao HR, Upadhyaya S (2007) Decis Support Syst 42:2164CrossRefGoogle Scholar
  36. 36.
    Kessler MR, Sottos NR, White SR (2003) Compos A 34:743CrossRefGoogle Scholar
  37. 37.
    Hayes SA, Jones FR, Marshiya K, Zhang W (2007) Compos A 38:1116CrossRefGoogle Scholar
  38. 38.
    Kirkby EL, Michaud VJ, Månson JAE, Sottos NR, White SR (2009) Polymer 50:5533CrossRefGoogle Scholar
  39. 39.
    Noh HH et al (2013) Express Polym Lett 7:88Google Scholar
  40. 40.
    Hua J, Chenb HQ, Zhanga Z (2009) Mater Chem Phys 118:63CrossRefGoogle Scholar
  41. 41.
    Halasa AF (1981) Rubber Chem Technol 54:627CrossRefGoogle Scholar
  42. 42.
    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004CrossRefGoogle Scholar
  43. 43.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596CrossRefGoogle Scholar
  44. 44.
    Tornoe CW, Christensen C, Meldal M (2002) J Org Chem 67:3057CrossRefGoogle Scholar
  45. 45.
    Kumaraswamy G, Ankamma K, Pitchaiah A (2007) J Org Chem 72:9822CrossRefGoogle Scholar
  46. 46.
    Schunack M, Gragert M, Döhler D, Michael P, Binder WH (2012) Macromol Chem Phys 213:205CrossRefGoogle Scholar
  47. 47.
    Evans RA (2007) Aust J Chem 60:384CrossRefGoogle Scholar
  48. 48.
    Weizman H, Nielsen C, Weizman OS, Nasser SN (2011) J Chem Educ 88:1137CrossRefGoogle Scholar
  49. 49.
    Döhler D, Michael P, Wolfgang HB (2012) Macromolecules 45:3335CrossRefGoogle Scholar
  50. 50.
    Huisgen R (1961) Proc Chem Soc 357Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bhaskar Jyoti Saikia
    • 1
  • Dhaneswar Das
    • 1
  • Pronob Gogoi
    • 1
  • Swapan Kumar Dolui
    • 1
    Email author
  1. 1.Department of Chemical SciencesTezpur UniversityNapaamIndia

Personalised recommendations