Advertisement

Smart Biopolymers in Food Industry

  • Ricardo StefaniEmail author
  • Gabrielle L. R. R. B. Vinhal
  • Diego Vinicius do Nascimento
  • Mayra Cristina Silva Pereira
  • Paula Becker Pertuzatti
  • Karina da Silva Chaves
Chapter

Abstract

Over the course of the last decade, significant interest in the use of biopolymers within the food industry as smart and active polymer systems has emerged. Such polymers have been successfully utilized to entrap micronutrients within microparticles and antioxidant packaging and have also been employed within food quality monitoring systems, such as active and intelligent packaging systems. The technologies that are associated with smart and active biopolymers have the potential to drive the development of a new generation of intelligent/active packaging systems that integrate food quality monitoring systems and microparticles in a manner that extends the shelf life of food products and their nutritional value. This chapter provides an in-depth review of the techniques that are typically employed in the preparation and characterization of smart and active biopolymers, films and microparticles, their potential applications within the food industry, and the challenges that are associated with their use and development.

Keywords

Smart packaging Microparticles Biopolymers Food safety Antioxidants 

References

  1. 1.
    Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS (2012) Anal Chem 84:2900–2907CrossRefGoogle Scholar
  2. 2.
    Bhattarai J, Sharma A, Fujikawa K, Demchenko AV, Stine KJ (2015) Carbohydr Res 405:55–65CrossRefGoogle Scholar
  3. 3.
    Barbosa-Pereira L, Cruz JM, Sendόn R, Quirόs ARB, Ares A, Castro-Lόpez M, Abad MJ, Maroto J, Paseiro-Losada P (2014) Food Control 31:236–246CrossRefGoogle Scholar
  4. 4.
    Bitencourt CM, Fávaro-Trindade CS, Sobral PJA, Carvalho RA (2014) Food Hydrocoll 40:145–152CrossRefGoogle Scholar
  5. 5.
    Contini C, Allvarez R, Sullivan MO, Dowling DP, Gargan SO, Monahan FJ (2014) Meat Sci 96:1171–1176CrossRefGoogle Scholar
  6. 6.
    Ramos M, Beltrán A, Peltzer M, Valente AJ, Garrigós MDC (2014) LWT Food Sci Technol 58:470–477CrossRefGoogle Scholar
  7. 7.
    Sies H, Stahl W (1995) Am J Clin Nutr 62:1315S–1321SGoogle Scholar
  8. 8.
    Tongnuanchan P, Benjakul S, Prodpran T (2013) J Food Eng 117:350–360CrossRefGoogle Scholar
  9. 9.
    Pacquit A, Frisby J, Diamond D, Lau K, Farrell A, Quilty B (2007) Food Chem 102:466–470CrossRefGoogle Scholar
  10. 10.
    Pacquit A, Lau KT, McLaughlin H, Frisby J, Quilty B, Diamond D (2006) Talanta 69:515–520CrossRefGoogle Scholar
  11. 11.
    Pereira VA, de Arruda INQ, Stefani R (2015) Food Hydrocoll 43:180–188CrossRefGoogle Scholar
  12. 12.
    Wu D, Wang Y, Chen J, Ye X, Wu Q, Liu D, Ding T (2013) Food Control 34:230–234CrossRefGoogle Scholar
  13. 13.
    Yoshida CM, Maciel VBV, Mendonça MED, Franco TT (2014) LWT Food Sci Technol 55:83–89CrossRefGoogle Scholar
  14. 14.
    Zhang X, Lu S, Chen X (2014) Sens Actuators B Chem 198:268–273CrossRefGoogle Scholar
  15. 15.
    Kreyenschmidt J, Christiansen H, Hübner A, Raab V, Petersen B (2010) Int J Food Sci Technol 45:208–215CrossRefGoogle Scholar
  16. 16.
    Zhang C, Yin A-X, Jiang R, Rong J, Dong L, Zhao T, Sun L-D, Wang J, Chen X, Yan CH (2013) ACS Nano 7:4561–4568CrossRefGoogle Scholar
  17. 17.
    Mills A (2005) Chem Soc Rev 34:1003–1011CrossRefGoogle Scholar
  18. 18.
    Eaton K (2002) Sens Actuators B Chem 85:42–51CrossRefGoogle Scholar
  19. 19.
    Vu CHT, Won K (2013) Food Chem 140:52–56CrossRefGoogle Scholar
  20. 20.
    Lam P, Gambari R (2014) J Control Release 178:25–45CrossRefGoogle Scholar
  21. 21.
    Madene A, Jacquot M, Scher J, Desobry S (2006) Int J Food Sci Technol 41:1–21CrossRefGoogle Scholar
  22. 22.
    Rutz JK, Zambiazi RC, Borges CD, Krumreich FD, da Luz SR, Hartwig N, da Rosa CG (2013) Carbohydr Polym 98:1256–1265CrossRefGoogle Scholar
  23. 23.
    Garcia M, Pinotti A, Martino M, Zaritzky N (2004) Carbohydr Polym 56:339–345CrossRefGoogle Scholar
  24. 24.
    Golasz LB, da Silva J, da Silva SB (2013) Ciênc Tecnol Aliment 33:155–162CrossRefGoogle Scholar
  25. 25.
    Kuswandi B, Jayus A, Restyana A, Abdullah A, Heng LY, Ahmad M (2012) Food Control 25:184–189CrossRefGoogle Scholar
  26. 26.
    Silva-Pereira MC, Teixeira JA, Pereira-Júnior VA, Stefani R (2015) LWT Food Sci Technol 61:258–262CrossRefGoogle Scholar
  27. 27.
    Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Food Res Int 42:762–769CrossRefGoogle Scholar
  28. 28.
    Qureshi UK, Karthikeyan MA, Karthikeyan SP, Ahmed KP, Sudhir U, Pakistan M (2012) J Food Sci 22:23–31Google Scholar
  29. 29.
    Brasil I, Gomes C, Puerta-Gomez A, Castell-Perez M, Moreira R (2012) LWT Food Sci Technol 47:39–45CrossRefGoogle Scholar
  30. 30.
    Marek P, Velasco-Veléz JJ, Haas T, Doll T, Sadowski G (2013) Sens Actuators B Chem 178:254–262CrossRefGoogle Scholar
  31. 31.
    Chigurupati N, Saiki L, Gayser C, Dash AK (2002) Int J Pharm 241:293–299CrossRefGoogle Scholar
  32. 32.
    Kim MJ, Jung SW, Park HR, Lee SJ (2012) J Food Eng 113:471–478CrossRefGoogle Scholar
  33. 33.
    Salinas Y, Ros-Lis JV, Vivancos J-L, Martínez-Máñez R, Marcos MD, Aucejo S, Herranz N, Lorente I (2012) Analyst 137:3635–3643CrossRefGoogle Scholar
  34. 34.
    Shahid M, ul-Islam S, Mohammad F (2013) J Clean Prod 53:310–331CrossRefGoogle Scholar
  35. 35.
    Veiga-Santos P, Ditchfield C, Tadini CC (2010) J Appl Polym Sci 120:1069–1079CrossRefGoogle Scholar
  36. 36.
    Gόmez-Estaca J, de Dicastillo CL, Hernández-Muñoz P, Catalá R, Gavara R (2014) Trends Food Sci Technol 35:42–51CrossRefGoogle Scholar
  37. 37.
    de Dicastillo CL, Alonso JM, Catala R, Gavara R, Hernandez-Munoz P (2010) J Agric Food Chem 58:10958–10964CrossRefGoogle Scholar
  38. 38.
    Rauwendaal C (2014) Polymer extrusion, 5th edn. Carl Hanser Verlag, MunichCrossRefGoogle Scholar
  39. 39.
    Sauceau M, Fages J, Common A, Nikitine C, Rodier E (2011) Prog Polym Sci 36:749–766CrossRefGoogle Scholar
  40. 40.
    Mahdaoui O, Laure P, Agassant J-F (2013) J Nonnewton Fluid Mech 195:67–76CrossRefGoogle Scholar
  41. 41.
    Gόmez-Guillén M, Pérez-Mateos M, Gόmez-Estaca J, Lόpez-Caballero E, Giménez B, Montero P (2009) Trends Food Sci Technol 20:3–16CrossRefGoogle Scholar
  42. 42.
    Hanani ZN, O’Mahony JA, Roos YH, Oliveira PM, Kerry J (2014) Food Packag Shelf Life 2:91–101CrossRefGoogle Scholar
  43. 43.
    Levi S, Rac V, Manojlovi V, Raki V, Bugarski B, Flock T, Krzyczmonik KE, Nedovi V (2011) Procedia Food Sci 1:1816–1820CrossRefGoogle Scholar
  44. 44.
    Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Innov Food Sci Emerg Technol 27:15–25CrossRefGoogle Scholar
  45. 45.
    Shahidi F, Han X (1993) Crit Rev Food Sci Nutr 33:501–547CrossRefGoogle Scholar
  46. 46.
    Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Food Res Int 40:1107–1121CrossRefGoogle Scholar
  47. 47.
    Shewan HM, Stokes JR (2013) J Food Eng 119:781–792CrossRefGoogle Scholar
  48. 48.
    Nazzaro F, Orlando P, Fratianni F, Coppola R (2012) Curr Opin Biotechnol 23:182–186CrossRefGoogle Scholar
  49. 49.
    de Barros Fernandes RV, Marques GR, Borges SV, Botrel DA (2014) Ind Crop Prod 58:173–181CrossRefGoogle Scholar
  50. 50.
    Krishnan S, Kshirsagar A, Singhal R (2005) Carbohydr Polym 62:309–315CrossRefGoogle Scholar
  51. 51.
    Aghbashlo M, Mobli H, Madadlou A, Rafiee S (2012) Food Res Int 49:379–388CrossRefGoogle Scholar
  52. 52.
    Donhowe EG, Flores FP, Kerr WL, Wicker L, Kong F (2014) LWT Food Sci Technol 57:42–48CrossRefGoogle Scholar
  53. 53.
    Maciel G, Chaves K, Grosso C, Gigante M (2014) J Dairy Sci 97(4):1991–1998CrossRefGoogle Scholar
  54. 54.
    Fang Z, Bhandari B (2012) Food Res Int 48:478–483CrossRefGoogle Scholar
  55. 55.
    da Costa JMG, Silva EK, Hijo AACT, Azevedo VM, Malta MR, Alves JGLF, Borges SV (2015) Powder Technol 274:296–304CrossRefGoogle Scholar
  56. 56.
    Gamboa OD, Gonçalves LG, Grosso CF (2011) Procedia Food Sci 1:1732–1739CrossRefGoogle Scholar
  57. 57.
    Sillick M, Gregson CM (2012) LWT Food Sci Technol 48(1):107–113CrossRefGoogle Scholar
  58. 58.
    Heidebach T, Först P, Kulozik U (2012) Crit Rev Food Sci 52:291–311CrossRefGoogle Scholar
  59. 59.
    Roginsky V, Lissi E (2005) Food Chem 92:235–254CrossRefGoogle Scholar
  60. 60.
    Khazaei KM, Jafari S, Ghorbani M, Kakhki AH (2014) Carbohydr Polym 105:57–62CrossRefGoogle Scholar
  61. 61.
    Kaushik V, Roos YH (2007) LWT Food Sci Technol 40:1381–1391CrossRefGoogle Scholar
  62. 62.
    Dianawati D, Mishra V, Shah NP (2013) Food Res Int 51:503–509CrossRefGoogle Scholar
  63. 63.
    Martin-Dejardin F, Ebel B, Lemetais G, Minh HNT, Gervais P, Cachon R, Chambin O (2013) Eur J Pharm Sci 49:166–174CrossRefGoogle Scholar
  64. 64.
    Jun-xia X, Hai-yan Y, Jian Y (2011) Food Chem 125:1267–1272CrossRefGoogle Scholar
  65. 65.
    Wang B, Adhikari B, Barrow CJ (2014) Food Chem 158:358–365CrossRefGoogle Scholar
  66. 66.
    Huang Z, Li X, Zhang T, Song Y, She Z, Li J, Deng Y (2014) Asian J Pharm Sci 9:176–182CrossRefGoogle Scholar
  67. 67.
    Kheadr EE, Vuillemard J, El-Deeb S (2003) Food Res Int 36:241–252CrossRefGoogle Scholar
  68. 68.
    Xia S, Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Qin F (2015) Colloids Surface B Biointerfaces 128:172–180CrossRefGoogle Scholar
  69. 69.
    Abbasi S, Azari S (2011) Int J Food Sci Technol 46:1927–1933CrossRefGoogle Scholar
  70. 70.
    Cooksey K (2010) In: Robertson GL (ed) Food packaging and shelf life: a practical guide. Taylor & Francis, London, pp 367–381Google Scholar
  71. 71.
    ASTM Standard D1708-13 (2013) Standard test method for tensile properties of plastics by use of microtensile specimens. In: ASTM International, West Conshohocken, PA. doi:  10.1520/D1708, www.astm.org. (Last Accessed: May 2015)
  72. 72.
    Joye IJ, McClements DJ (2014) Curr Opin Colloid Interface Sci 19:417–427CrossRefGoogle Scholar
  73. 73.
    ASTM E96/E96M-14 (2014) Standard test methods for water vapor transmission of materials. In: ASTM International, West Conshohocken, PA. doi:  10.1520/E0096_E0096M-14, www.astm.org. (Last Accessed: May 2015)
  74. 74.
    FAO (2013) OCDE-FAO El desperdicio de alimentos daña al clima, el agua, la tierra y la biodiversidad.Google Scholar
  75. 75.
    Robertson GL (2006) Food packaging and shelf life, 2nd edn. CRC Press, LondonGoogle Scholar
  76. 76.
    Muriel-Galet V, Cran MJ, Bigger SW, Hernández-Muñoz P, Gavara R (2015) J Food Eng 149:9–16CrossRefGoogle Scholar
  77. 77.
    Wrona M, Bentayeb K, Nerín C (2015) Food Control 54:200–207CrossRefGoogle Scholar
  78. 78.
    Ferreira AS, Nunes C, Castro A, Ferreira P, Coimbra MA (2014) Carbohydr Polym 113:490–499CrossRefGoogle Scholar
  79. 79.
    Barbosa-Pereira L, Cruz JM, Sendon R, de Quiros ARB, Ares A, Castro-Lopez M, Abad MJ, Maroto J, Paseiro-Losada P (2013) Food Control 31:236–243CrossRefGoogle Scholar
  80. 80.
    Li J-H, Miao J, Wu J-L, Chen S-F, Zhang Q-Q (2014) Food Hydrocoll 37:166–173CrossRefGoogle Scholar
  81. 81.
    Lorenzo JM, Batlle R, Gomez M (2014) LWT Food Sci Technol 59:181–188CrossRefGoogle Scholar
  82. 82.
    Samsudin H, Soto-Valdez H, Auras R (2014) Food Control 46:55–66CrossRefGoogle Scholar
  83. 83.
    Teixeira B, Marques A, Pires C, Ramos C, Batista I, Saraiva JA, Nunes ML (2014) LWT Food Sci Technol 59:533–539CrossRefGoogle Scholar
  84. 84.
    Bolumar T, Andersen ML, Orlien V (2011) Food Chem 129:1406–1412CrossRefGoogle Scholar
  85. 85.
    de Abreu DAP, Losada PP, Maroto J, Cruz JM (2011) Innov Food Sci Emerg Technol 12(1):50–55CrossRefGoogle Scholar
  86. 86.
    Bonilla J, Atarés L, Vargas M, Chiralt A (2012) J Food Eng 110:208–213CrossRefGoogle Scholar
  87. 87.
    Lόpez-Caballero M, Gόmez-Guillén M, Pérez-Mateos M, Montero P (2005) Food Hydrocoll 19:303–311CrossRefGoogle Scholar
  88. 88.
    Shukla V, Kandeepan G, Vishnuraj MR (2015) Food Anal Methods. doi: 10.1007/s12161-014-0066-6 Google Scholar
  89. 89.
    Halliwell B, Gutteridge J (1989) Free radicals in biology and medicine, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  90. 90.
    Moon J-K, Shibamoto T (2009) J Agric Food Chem 57(5):1655–1666CrossRefGoogle Scholar
  91. 91.
    Huang D, Ou B, Prior RL (2005) J Agric Food Chem 53:1841–1856CrossRefGoogle Scholar
  92. 92.
    Pertuzatti PB, Barcia MT, Rodrigues D, da Cruz PN, Hermosín-Gutiérrez I, Smith R, Godoy HT (2014) Food Chem 164:81–88CrossRefGoogle Scholar
  93. 93.
    Wang T, Zhang J, Zang X (2010) Afr J Biotechnol 9:6146–6151Google Scholar
  94. 94.
    Nopwinyuwong A, Trevanich S, Suppakul P (2010) Talanta 81(3):1126–1132CrossRefGoogle Scholar
  95. 95.
    Anal AK, Singh H (2007) Trends Food Sci Technol 18:240–251CrossRefGoogle Scholar
  96. 96.
    Shoji A, Oliveira A, Balieiro J, Freitas O, Thomazini M, Heinemann R, Okuro P, Favaro-Trindade C (2013) Food Bioprod Process 91:83–88CrossRefGoogle Scholar
  97. 97.
    Nesterenko A, Alric I, Silvestre F, Durrieu V (2014) Food Hydrocoll 38:172–179CrossRefGoogle Scholar
  98. 98.
    Wang J, Cao Y, Sun B, Wang C (2011) Food Chem 127:1680–1685CrossRefGoogle Scholar
  99. 99.
    Anjani K, Kailasapathy K, Phillips M (2007) Int Dairy J 17:79–86CrossRefGoogle Scholar
  100. 100.
    Gebara C, Chaves KS, Ribeiro MCE, Souza FN, Grosso CR, Gigante ML (2013) Food Res Int 51:872–878CrossRefGoogle Scholar
  101. 101.
    Betz M, Kulozik U (2011) Procedia Food Sci 1:2047–2056CrossRefGoogle Scholar
  102. 102.
    Betz M, Steiner B, Schantz M, Oidtmann J, Mäder K, Richling E, Kulozik U (2012) Food Res Int 47:51–57CrossRefGoogle Scholar
  103. 103.
    Ribeiro MCE, Chaves KS, Gebara C, Infante FN, Grosso CR, Gigante ML (2014) Food Res Int 66:424–431CrossRefGoogle Scholar
  104. 104.
    Çam M, Içyer NC, Erdoğan F (2014) LWT Food Sci Technol 55:117–123CrossRefGoogle Scholar
  105. 105.
    Estrada J, Boeneke C, Bechtel P, Sathivel S (2011) J Dairy Sci 94:5760–5769CrossRefGoogle Scholar
  106. 106.
    Ezhilarasi P, Indrani D, Jena B, Anandharamakrishnan C (2013) J Food Eng 117:513–520CrossRefGoogle Scholar
  107. 107.
    Gupta C, Chawla P, Arora S, Tomar S, Singh A (2015) Food Hydrocoll 43:622–628CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ricardo Stefani
    • 1
    Email author
  • Gabrielle L. R. R. B. Vinhal
    • 1
  • Diego Vinicius do Nascimento
    • 1
  • Mayra Cristina Silva Pereira
    • 1
  • Paula Becker Pertuzatti
    • 2
  • Karina da Silva Chaves
    • 1
  1. 1.Universidade Federal de Mato Grosso (UFMT), LEMATBarra do GarçṃasBrazil
  2. 2.Laboratorio de Analise de AlimentosUFMTBarra do GarçṃasBrazil

Personalised recommendations