Advertisement

Application of Conducting Polymers in Solar Water-Splitting Catalysis

  • Mohammed Alsultan
  • Abbas RanjbarEmail author
  • Gerhard F. SwiegersEmail author
  • Gordon G. Wallace
  • Sivakumar Balakrishnan
  • Junhua Huang
Chapter

Abstract

Water splitting is the general term for a chemical reaction in which water is separated into its constituent materials, oxygen and hydrogen. Hydrogen is widely considered to be an ideal fuel of the future due to its potential to replace fossil fuels. The key to an energy-efficient water-splitting process lies in catalysts that can carry out the water oxidation and reduction reactions with minimal energy losses. Conducting polymers are attractive materials for this technology and application because they may combine several desirable properties, including electronic conduction, ionic conduction, sensor functionality, and electrochromism. In this chapter, water splitting assisted by or driven by illumination with sunlight and involving conducting polymers is reviewed. The properties of conducting polymers that make them favorable for this purpose are also discussed. Comparisons of these properties with those of conventional water-splitting materials are made. Finally, a statement of research and achievements of solar hydrogen production through water splitting using conductive polymers will be reported.

Keywords

Water splitting Conducting polymers Water-splitting catalysis Properties of conducting polymers 

Abbreviations

AAO

Anodized aluminum oxide

APS

3-(Aminopropyl)triethoxysilane

BHJ

Bulk heterojunction

BI-VPP

Base-inhibited vapor-phase polymerization

CB

Conduction band

CP

Conducting polymer

CV

Cyclic voltammogram

CTAB

Cetyltrimethyl ammonium bromide

DBSNa or SDBS

Sodium dodecylbenzene sulfonate

DSC

Dye-sensitized solar cell

ESR

Electron spin resonance

FESEM

Field emission scanning electron microscopy

FTIR

Fourier transform infrared spectroscopy

FTO

Fluorine-doped tin oxide

h+

Hole (in the valence band)

GC

Glassy carbon

HER

Hydrogen evolution reaction

HOMO

Highest occupied molecular orbital

IPCE

Incident photon-to-current conversion efficiency

ITO

Indium tin oxide

LM2

Poly(2-ethynyl-N-aminopropylpyridiniumbromide)

LM3

Poly(2-ethynyl-N-carboxypropylpyridiniumbromide)

LSV

Linear sweep voltammogram

LUMO

Lowest unoccupied molecular orbital

OER

Oxygen evolution reaction

OPE-O electrode

Organic photoelectrode (oxidation) electrode

OPE-R electrode

Organic photoelectrode (reduction) electrode

ORR

Oxygen reduction reaction

OSC

Organic thin-film solar cells

PANI

Polyaniline

PCBM

Phenyl-C61-butyric acid methyl ester

PDTT

Poly(dithieno[3,2-b:2′,3′-d]thiophene)

PEC

Photoelectrochemical (cell)

PEDOT

Poly(3,4-ethylenedioxythiophene)

PEDOT-PEG

Poly(3,4-ethylenedioxythiophene)–poly(ethylene glycol)

PEDOT-1

Poly(3,4-ethylenedioxythiophene)–Mn-porphyrin

PEG

Poly(ethylene glycol)

PET

Poly(ethylene terephthalate)

PPy

Polypyrrole

PRR

Proton reduction reaction

PTh

Polythiophene

PTT

Poly(thieno[3,2-b]thiophene)

PTTh

Polyterthiophene

p-TS

p-toluenesulfonate

P3HT

Poly(3-hexylthiophene)

SHE

Standard hydrogen electrode

TSNa

Sodium p-toluenesulfonate

VB

Valence band

VPP

Vapor-phase polymerization

WOR

Water oxidation reaction

References

  1. 1.
    Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, MacDiarmid AG, Park YW, Shirakawa H (1978) J Am Chem Soc 100:1013CrossRefGoogle Scholar
  2. 2.
    Baseescu N, Liu ZX, Moses D, Heeger AJ, Naarmann H, Theophilou N (1987) Nature 327:403CrossRefGoogle Scholar
  3. 3.
    Yahyaie I, Ardo S, Oliver DR, Thomson DJ, Freund MS, Lewis NS (2012) Energy Environ Sci 5:9789CrossRefGoogle Scholar
  4. 4.
    Pratt C (2015) Applications of conducting polymers. http://homepage.ntlworld.com/colin.pratt/applcp.pdf. Accessed 14 May 2015.
  5. 5.
    Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI (2012) Int J Electrochem Sci 7:11859Google Scholar
  6. 6.
    Ziadan K (2012) Conducting polymers application. In: Souza Gomes AD (ed) New polymers for special applications. InTech, Rijeka, pp 1–22Google Scholar
  7. 7.
    Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: a practical approach. Kluwer, BostonCrossRefGoogle Scholar
  8. 8.
    Bachhshi AK, Bahalla G (2004) J Sci Ind Res 63:715Google Scholar
  9. 9.
    Saini P, Arora M (2012) Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. In: Souza Gomes AD (ed) New polymers for special applications. InTech, Rijeka, pp 72–112Google Scholar
  10. 10.
    Almeida LC, Ebrary I (2013) Conducting polymers: synthesis, properties and applications. Nova Science, New YorkGoogle Scholar
  11. 11.
    Tributsch H (2008) Int J Hydrogen Energy 33:5911CrossRefGoogle Scholar
  12. 12.
    Vernitskaya TV, Efimov ON (1997) Russ Chem Rev 66:443CrossRefGoogle Scholar
  13. 13.
    Ilicheva NS, Kitaeva NK, Duflot VR, Kabanova VI (2012) ISRN Polym Sci 2012:1CrossRefGoogle Scholar
  14. 14.
    Kassim A, Basar ZB, Mahmud HN (2002) J Chem Sci 114:155CrossRefGoogle Scholar
  15. 15.
    Arthur J, Honda K (1985) J Photochem 29:195CrossRefGoogle Scholar
  16. 16.
    Tan Y, Chen Y, Mahimwalla Z, Johnson MB, Sharma T, Brüning R, Ghandi K (2014) Synth Met 189:77CrossRefGoogle Scholar
  17. 17.
    Zou Z, Ye J, Sayama K, Arakawa H (2001) Nature 414:625CrossRefGoogle Scholar
  18. 18.
    Liu H, Yuan J, Shangguan W, Teraoka Y (2008) J Phys Chem 112:8521Google Scholar
  19. 19.
    Abe R, Takata T, Sugihara H, Domen K (2005) Chem Commun 14:3829–3831CrossRefGoogle Scholar
  20. 20.
    Gu S, Li B, Zhao C, Xu Y, Qian X, Chen G (2011) J Alloys Compd 509:5677CrossRefGoogle Scholar
  21. 21.
    Wang D, Wang Y, Li X, Luo Q, An J, Yue J (2008) Catal Commun 9:1162CrossRefGoogle Scholar
  22. 22.
    Håkansson E, Lin T, Wang H, Kaynak A (2006) Synth Met 156:1194CrossRefGoogle Scholar
  23. 23.
    Zhang S, Chen Q, Jing D, Wang Y, Guo L (2011) Int J Hydrogen Energy 37:791CrossRefGoogle Scholar
  24. 24.
    Zhang S, Chen Q, Wang Y, Guo L (2012) Int J Hydrogen Energy 37:13030CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Yuan Y, Liang L, Cheng Y, Xu H, Shi G, Jin L (2008) Thin Solid Films 516:8663CrossRefGoogle Scholar
  26. 26.
    Wang Z, Xiao P, Qiao L, Meng X, Zhang Y, Li X, Yang F (2013) Phys B 419:51CrossRefGoogle Scholar
  27. 27.
    Mingzhao L, Chang-Yong N, Charles T, Jovan K, Lihua Z (2013) J Phys Chem C 117:13396CrossRefGoogle Scholar
  28. 28.
    Mola J, Mas-Marza E, Sala X, Romero I, Rodríguez M, Viñas C, Parella T, Llobet A (2008) Angew Chem Int Ed 47:5830CrossRefGoogle Scholar
  29. 29.
    Brimblecombe R, Dismukes GC, Swiegers GF, Spiccia L (2009) Dalton Trans 43:9374CrossRefGoogle Scholar
  30. 30.
    Pyshkina O, Kubarkov A, Sergeyev V (2010) Sci J Riga Tech Univ 21:51Google Scholar
  31. 31.
    Kros A, Sommerdijk NAJM, Nolte RJM (2005) Sens Actuators 106:289CrossRefGoogle Scholar
  32. 32.
    Carlberg C, Chen X, Inganäs O (1996) Solid State Ionics 85:73CrossRefGoogle Scholar
  33. 33.
    Wei W, Wang H, Hu YH (2014) Int J Energy Res 38:1099CrossRefGoogle Scholar
  34. 34.
    Chaokang G, Brent C, Norris F, Christopher W, Bielawski C, Allen J (2012) ACS Catal 2:746CrossRefGoogle Scholar
  35. 35.
    Metsik J, Saal K, Mäeorg U, Lõhmus R, Leinberg S, Mändar H, Kodu M, Timusk M (2014) J Polym Sci B Polym Phys 52:561CrossRefGoogle Scholar
  36. 36.
    Li X, Lu W, Dong W, Chen Q, Wu D, Zhou W, Chen L (2013) Nanoscale 5:5257CrossRefGoogle Scholar
  37. 37.
    Kim S, Pang I, Lee J (2007) Macromol Rapid Commun 28:1574CrossRefGoogle Scholar
  38. 38.
    Swiegers GF, Smith PF, Spiccia L, Wagner P, Wallace GG, Winther-Jensen B, Winther-Jensen O, MacFarlane DR, Officer DL, Ballantyne A, Boskovic D, Chen J, Dismukes GC, Gardner GP, Hocking RK (2012) Aust J Chem 65:577CrossRefGoogle Scholar
  39. 39.
    Kolodziejczyk B, Winther-Jensen O, MacFarlane D, Winther-Jensen B (2012) J Mater Chem 22:1821CrossRefGoogle Scholar
  40. 40.
    Gustafson MP, Matsumoto K, MacFarlane DR, Winther-Jensen B (2014) Electrochim Acta 122:166CrossRefGoogle Scholar
  41. 41.
    Winther-Jensen B, Fraser K, Ong C, Forsyth M, MacFarlane DR (2010) Adv Mater 22:1727CrossRefGoogle Scholar
  42. 42.
    Yang T, Wang H, Ou X, Lee C, Zhang X (2012) Adv Mater 24:6199CrossRefGoogle Scholar
  43. 43.
    Duan C, Wang H, Ou X, Li F, Zhang X (2014) ACS Appl Mater Interfaces 6:9742CrossRefGoogle Scholar
  44. 44.
    Jeong S, Garnett EC, Wang S, Yu Z, Fan S, Brongersma ML, McGehee MD, Cui Y (2012) Nano Lett 12:2971CrossRefGoogle Scholar
  45. 45.
    Chowdhury AD, Agnihotria N, Senb P, De A (2014) Electrochim Acta 118:81CrossRefGoogle Scholar
  46. 46.
    Winther-Jensen B, MacFarlane DR (2011) Energy Environ Sci 4:2790CrossRefGoogle Scholar
  47. 47.
    Winther-Jensen O, Winther-Jensen B, Forsyth M, MacFarlane DR (2008) Science 321:671CrossRefGoogle Scholar
  48. 48.
    Chen J, Wagner PW, Tong L, Boskovic D, Zhang W, Officer DL, Wallace GG, Swiegers GF (2013) Chem Sci 4:2797CrossRefGoogle Scholar
  49. 49.
    Masdarolomoor F (2007) Novel nanostructured conducting polymer systems based on sulfonated polyaniline. Ph.D thesis, University of Wollongong, Wollongong, NSW.Google Scholar
  50. 50.
    Liu W, Cholli AL, Nagarajan R, Kumar J, Tripathy S, Bruno FF, Samuelson L (1999) J Am Chem Soc 121:11345CrossRefGoogle Scholar
  51. 51.
    Wallace GG, Spinks GM, Teasdale PR (2002) Conductive electroactive polymers. CRC Press, LondonGoogle Scholar
  52. 52.
    Pron A, Rannou P (2002) Prog Polym Sci 27:135CrossRefGoogle Scholar
  53. 53.
    McCall RP, Ginder JM, Leng JM, Ye HJ, Epstein AJ (1990) Phys Rev B 41:5202CrossRefGoogle Scholar
  54. 54.
    Song E, Choi J-W (2013) Nanomaterials 3:498CrossRefGoogle Scholar
  55. 55.
    Skotheim TA, Reynolds JR (2007) Handbook of conducting polymers. CRC Press, Boca RatonGoogle Scholar
  56. 56.
    Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K, Luo S, He Z, Chen J (2013) J Power Sources 234:100CrossRefGoogle Scholar
  57. 57.
    Belabed C, Abdi A, Benabdelghani Z, Rekhila G, Etxeberria A, Trari M (2013) Int J Hydrogen Energy 38:6593CrossRefGoogle Scholar
  58. 58.
    Hidalgo DH, Hernandez SP, Bocchini S, Fontana G, Pirri CF (2013) Deposition of polyaniline in TiO2 mesoporous film and its use as sensitizer for photocatalytic water splitting. In: International congress on materials and renewable energy. Athens, Greece, 1–3 July 2013. http://porto.polito.it/2519080/. Accessed 14 May 2015.
  59. 59.
    Zhao Z, Zhou Y, Wan W, Wang F, Zhang Q, Lin Y (2014) Mater Lett 130:150CrossRefGoogle Scholar
  60. 60.
    Palmas S, Masciaa M, Vaccaa A, Llanosb J, Menab E, Rodrigo MA, Ampudia P (2014) Chem Eng Trans 41:337Google Scholar
  61. 61.
    Zhang S, Chen Q, Jing D, Wang Y, Guo L (2012) Int J Hydrogen Energy 37:791CrossRefGoogle Scholar
  62. 62.
    Nsib MF, Saafia S, Rayes A, Houas A (2014) Sci Techol A—N°39. 107.Google Scholar
  63. 63.
    Mao A, Shin K, Kim JK, Wang DH, Han GY, Park JH (2011) ACS Appl Mater Interfaces 3:1852CrossRefGoogle Scholar
  64. 64.
    Damian A, Omanovic S (2006) J Power Sources 158:464CrossRefGoogle Scholar
  65. 65.
    Cutler C (2000) Electrochemical and photoelectrochemical studies of functionalised polythiophene. PhD thesis, University of Wollongong, Wollongong, NSW.Google Scholar
  66. 66.
    Bertho D, Jouanin C (1987) Phys Rev B 35:626CrossRefGoogle Scholar
  67. 67.
    Koeckelberghs G, De Cremer L, Persoons A, Verbiest T (2007) Macromolecules 40:4173CrossRefGoogle Scholar
  68. 68.
    Senthilkumar B, Thenamirtham P, KalaiSelvan R (2011) Appl Surf Sci 257:9063CrossRefGoogle Scholar
  69. 69.
    Kim J, Sharma AK, Lee Y (2006) Mater Lett 60:1697CrossRefGoogle Scholar
  70. 70.
    Brédas JL, Wudl F, Heeger AJ (1987) Solid State Commun 63:577CrossRefGoogle Scholar
  71. 71.
    Valaski R, Moreira LM, Micaroni L, Hümmelgen A (2003) Braz J Phys 33:392CrossRefGoogle Scholar
  72. 72.
    Hajian A, Rafati AA, Afraz A, Najafi M (2014) J Electrochem Soc 161:B196CrossRefGoogle Scholar
  73. 73.
    Tsekouras G, Too CO, Wallace GG (2007) Synth Met 157:441CrossRefGoogle Scholar
  74. 74.
    Moore GF, Blakemore JD, Milot RL, Hull JF, Song H, Cai L, Schmuttenmaer CA, Crabtree RH, Brudvig GW (2011) Energy Environ Sci 4:2389CrossRefGoogle Scholar
  75. 75.
    Hagiwara H, Watanabe M, Daio T, Ida S, Ishihara T (2014) Chem Commun 50:12515CrossRefGoogle Scholar
  76. 76.
    Chen J, Wagner P, Tong L, Wallace GG, Officer DL, Swiegers GF (2012) Angew Chem 124:1943CrossRefGoogle Scholar
  77. 77.
    Gustafson MP, Clark N, Winther-Jensen B, MacFarlane DR (2014) Electrochim Acta 140:309CrossRefGoogle Scholar
  78. 78.
    Aoki A, Naruse M, Abe T (2013) ChemPhysChem 14:2317CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mohammed Alsultan
    • 1
    • 2
  • Abbas Ranjbar
    • 1
    Email author
  • Gerhard F. Swiegers
    • 1
    Email author
  • Gordon G. Wallace
    • 1
  • Sivakumar Balakrishnan
    • 1
  • Junhua Huang
    • 3
  1. 1.Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterial Science (ACES)University of WollongongWollongongAustralia
  2. 2.Department of ScienceCollege of Basic Education, University of MosulMosulIraq
  3. 3.School of ChemistryMonash UniversityClaytonAustralia

Personalised recommendations