Superhydrophobic and Water-Repellent Polymer-Nanoparticle Composite Films

  • Ioannis KarapanagiotisEmail author
  • Panagiotis Manoudis


The wetting properties of the surfaces of polymer films changed dramatically from the usual inherent hydrophobicity (or slight hydrophilicity) to superhydrophobicity (contact angle, CA > 150°) by embedding oxide nanoparticles into the polymer matrices. The desired hierarchical roughness at the micrometer and nanometer scale was induced in poly(methyl methacrylate), polystyrene, and four poly(alkyl siloxane) films enriched with silica, tin oxide, alumina, and zinc oxide nanoparticles, ranging from 7 to 70 nm in mean diameter. Particles were added in the polymer solutions which were afterward sprayed on various substrates, such as glass, silicon, concrete, aluminum, silk, paper, wood, marble (white), sandstone, and mortar. It is stressed that superhydrophobicity was accompanied by water repellency, as evidenced by the low contact angle hysteresis (CAH < 10°). Consequently, it is demonstrated that the simple suggested method for transforming the wetting properties of polymer films to achieve extreme nonwetting is flexible as it can be effectively applied using different materials, including polymers and nanoparticles of low cost. Moreover, the method can be easily used for the surface treatment of large and various substrates. The effects of the (1) concentration and size of the nanoparticles, (2) chemical nature of the polymer matrix, and (3) treated substrate on the wetting properties of the films were investigated and interpreted using scanning electron microscopy (SEM). Finally, it is shown that depending on the color of the underlying substrate, the superhydrophobic water-repellent polymer-nanoparticle films may have a negligible effect on the aesthetic appearance of the treated substrate.


Superhydrophobic Water repellent Polymer nanoparticle Lotus 


  1. 1.
    Rozenberg BA, Tenne R (2008) Prog Polym Sci 33:40–112CrossRefGoogle Scholar
  2. 2.
    Li S, Lin MM, Toprak MS, Kim DK, Muhammed M (2010) Nano Rev 1:5214. doi: 10.3402/nano.v1i0.5214 CrossRefGoogle Scholar
  3. 3.
    Hsieh C-T, Chen J-M, Kuo R-R, Lin T-S, Wu C-F (2005) Appl Surf Sci 240:318–326CrossRefGoogle Scholar
  4. 4.
    Chibowski E, Hołysz L, Terpilowski K, Jurak M (2006) Colloids Surf A 291:181–190CrossRefGoogle Scholar
  5. 5.
    Yüce MY, Demirel AL (2008) Eur Phys J B 64:493–497CrossRefGoogle Scholar
  6. 6.
    Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Panayiotou C (2008) Langmuir 24:11225–11232CrossRefGoogle Scholar
  7. 7.
    Ramaratnam K, Iyer SK, Kinnan MK, Chumanov G, Brown PJ, Luzinov I (2008) J Engineered Fibers Fabric 3:1–14Google Scholar
  8. 8.
    Cao L, Jones AK, Sikka VK, Wu J, Gao D (2009) Langmuir 25:12444–12448CrossRefGoogle Scholar
  9. 9.
    Manca M, Cannavale A, De Marco L, Aricò AS, Cingolani R, Gigli G (2009) Langmuir 25:6357–6362CrossRefGoogle Scholar
  10. 10.
    Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Kolinkeov B, Panayiotou C (2009) Appl Phys A 97:351–360CrossRefGoogle Scholar
  11. 11.
    Du X, Li X, He J (2010) ACS Appl Mater Interfaces 2:2365–2372CrossRefGoogle Scholar
  12. 12.
    Ke Q, Fu W, Wang S, Tang T, Zhang J (2010) ACS Appl Mater Interfaces 2:2393–2398CrossRefGoogle Scholar
  13. 13.
    Tiwari MK, Bayer IS, Jursich GM, Schutzius TM, Megaridis CM (2010) ACS Appl Mater Interfaces 2:1114–1119CrossRefGoogle Scholar
  14. 14.
    Karmouch R, Ross GG (2010) Appl Surf Sci 257:665–669CrossRefGoogle Scholar
  15. 15.
    Gao N, Yan YY, Chen XY, Zheng XF (2010) J Bionic Eng 7:S59–S66CrossRefGoogle Scholar
  16. 16.
    Ogihara H, Okagaki J, Saji T (2011) Langmuir 27:9069–9072CrossRefGoogle Scholar
  17. 17.
    Men X, Zhang Z, Yang J, Zhu X, Wang K, Jiang W (2011) New J Chem 35:881–886CrossRefGoogle Scholar
  18. 18.
    Ogihara H, Katayama T, Saji T (2011) J Colloid Interface Sci 362:560–566CrossRefGoogle Scholar
  19. 19.
    Basu BJ, Kumar VD (2011) ISRN Nanotechnol Article ID 803910Google Scholar
  20. 20.
    de Ferri L, Lottici PP, Lorenzi A, Montenero A, Salvioli-Mariani E (2011) J Cult Her 12:356–363CrossRefGoogle Scholar
  21. 21.
    Schutzius TM, Bayer IS, Jursich GM, Das A, Megaridis CM (2012) Nanoscale 4:5378–5385CrossRefGoogle Scholar
  22. 22.
    Yilgor I, Bilgin S, Isik M, Yilgor E (2012) Polymer 53:1180–1188CrossRefGoogle Scholar
  23. 23.
    Flores-Vivian I, Hejazi V, Kozhukhova MI, Nosonovsky M, Sobolev K (2013) ACS Appl Mater Interfaces 5:13284–13294CrossRefGoogle Scholar
  24. 24.
    Li K, Zeng X, Li H, Lai X, Ye C, Xie H (2013) Appl Surf Sci 279:458–463CrossRefGoogle Scholar
  25. 25.
    Lin J, Chen H, Fei T, Zhang J (2013) Colloids Surf A 421:51–62CrossRefGoogle Scholar
  26. 26.
    Xue C-H, Ji P-T, Zhang P, Li Y-R, Jia S-T (2013) Appl Surf Sci 284:464–471CrossRefGoogle Scholar
  27. 27.
    Seyedmehdi SA, Zhang H, Zhu J (2013) J Appl Polym Sci 128:4136–4140CrossRefGoogle Scholar
  28. 28.
    Manoudis PN, Karapanagiotis I (2014) Prog Org Coat 77:331–338CrossRefGoogle Scholar
  29. 29.
    D’Amato R, Caneve L, Giancristofaro C, Persia F, Pilloni L, Rinaldi A (2014) J Nanoeng Nanosyst 228:19–26Google Scholar
  30. 30.
    Barthlott W, Neinhuis C (1997) Planta 202:1–8CrossRefGoogle Scholar
  31. 31.
    Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Langmuir 24:4114–4119CrossRefGoogle Scholar
  32. 32.
    Ebert D, Bhushan A (2012) J Colloid Interface Sci 384:182–188CrossRefGoogle Scholar
  33. 33.
    Kulinich SA, Farzaneh M (2009) Langmuir 25:8854–8856CrossRefGoogle Scholar
  34. 34.
    Johnson RE, Dettre RH (1964) Adv Chem Ser 43:112–135CrossRefGoogle Scholar
  35. 35.
    Tserepi AD, Vlachopoulou M-E, Gogolides W (2006) Nanotechnology 17:3977–3983CrossRefGoogle Scholar
  36. 36.
    Morra M, Occhiello E, Garbassi F (1989) Langmuir 5:872–876CrossRefGoogle Scholar
  37. 37.
    Furmidge CGL (1962) J Colloid Sci 17:309–324CrossRefGoogle Scholar
  38. 38.
    Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–551CrossRefGoogle Scholar
  39. 39.
    Karapanagiotis I, Manoudis PN, Savva A, Panayiotou C (2012) Surf Interface Anal 44:870–875CrossRefGoogle Scholar
  40. 40.
    Karapanagiotis I, Manoudis PN, Zurba A, Lampakis D (2014) Langmuir 30:13235–13243CrossRefGoogle Scholar
  41. 41.
    Lai Y-K, Chen Z, Lin C-J (2011) J Nanoeng Nanomanuf 1:18–34CrossRefGoogle Scholar
  42. 42.
    Latthe SS, Gurav AB, Maruti CS, Vhatkar RS (2012) J Surf Eng Mater Adv Technol 2:76–94Google Scholar
  43. 43.
    Karapanagiotis I, Manoudis P (2012) J Mech Behav Mater 21:21–32Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Management and Conservation of Ecclesiastical Cultural Heritage ObjectsUniversity Ecclesiastical Academy of ThessalonikiThessalonikiGreece

Personalised recommendations