Skip to main content

Testing the Piezoelectric Energy Harvester’s Deflection on the Amount of Generated Energy

  • Conference paper
  • First Online:
Mechatronics: Ideas, Challenges, Solutions and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 414))

Abstract

On the market of energy harvesting devices, there are more and more solutions, what means strong development of this relatively new part of industry. In the case of underground mining industry, it is not possible to use the typical solutions and they must be properly adopted. Part of the project results associated with a development of wireless, self-supplying sensor networks for operation in underground mines are given. The results of the measurement of voltage generated by piezoelectric energy harvester (PEH) for of free mounting and installation in the housing, limiting its deflection, are given. Tests were conducted in the laboratory conditions, using a vibrating table. The measurement results indicate a significant reduction of energy generated by PEH when it is installed in the casing, confining its movement. Simulated operation of wireless sensor powered by PEH in a casing and without casing is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartoszek, S., Jagoda, J., Jura, J.: System diagnostyczny ładowarki bocznie wysypującej bazujący na iskrobezpiecznej magistrali CAN (in Polish). Szybkobieżne Pojazdy Gąsienicowe (32) nr 1, Ośrodek Badawczo-Rozwojowy Urządzeń Mechanicznych OBRUM sp. z o.o., Gliwice (2013)

    Google Scholar 

  2. Catalogue card of Elgór-Hansen EH-PressCater system (www.elgorhansen.com)

  3. Catalogue card of Famur FAMAC RSPC system (www.famur.com.pl)

  4. Zhu, D., Beeby, S.P., Tudor, M.J., Harris, N.R.: A credit card sized self powered smart sensor node. Sens. Actuators A 169(2), 317–325 (2011)

    Article  Google Scholar 

  5. Sazonov, E., Li, H., Curry, D., Pillay, P.: Self-powered sensors for monitoring of highway bridges. IEEE Sens. J. 9(11) (2009)

    Google Scholar 

  6. Wischke, M., Masur, M., Kröner, M., Woias, P.: Vibration harvesting in traffic tunnels to power wireless sensor nodes. Smart Mater. Struct. 20(8) (2011)

    Google Scholar 

  7. Lee, M., Bae, J., Lee, J., Lee, C.-S., Hong, S., Wang, Z.L.: Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci. 4, 3359–3363 (2011)

    Article  Google Scholar 

  8. Mitcheson, P.D., Rao, G.K., Green, T.C.: Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9) (2008)

    Google Scholar 

  9. Theophylus Yusuf, S., Halim, Y.M.A., Samosir, A.S., Abdulkadir, M.: Mechanical energy harvesting devices for low frequency applications: revisited. ARPN J. Eng. Appl. Sci. 8(7) (2013)

    Google Scholar 

  10. Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutorials 13(3) (2011)

    Google Scholar 

  11. Wang, Z.L.: Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2011)

    Article  Google Scholar 

  12. Stankiewicz, K.: Metoda samoorganizacji roju w monitorowaniu i sterowaniu urządzeń w warunkach wyrobisk podziemnych (in Polish). Maszyny Górnicze nr 4, 10–13 (2011)

    Google Scholar 

  13. Arabshahi, P., Gray, A., Kassabalidis, I., Das, A., Narayanan, S., Sharkawi, M., El Marks, R.J.: Adaptive routing in wireless communication networks using swarm intelligence. In: AIAA 19th Annual Satellite Communications System Conference, Toulouse, France (2001)

    Google Scholar 

  14. Buchacz, A., Wróbel, A.: Modelling of complex piezoelectric system by non-classical methods. J. Achievements Mater. Manufact. Eng. 35, 63–70 (2009)

    Google Scholar 

  15. Buchacz, A., Płaczek, M., Wróbel, A.: Control of characteristics of mechatronic systems using piezoelectric materials. J. Theor. Appl. Mech. 51(1), 225–234, Warsaw (2013)

    Google Scholar 

  16. Vullers, R.J.M., van Schaijk, R., Doms, I., Van Hoof, C., Mertens, R.: Micropower energy harvesting. Solid-State Electron. 53, 684–693 (2009)

    Article  Google Scholar 

  17. Chen, X.-R., Yang, T.-Q., Wang, W., Yao, X.: Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceram. Int. 38, 271–274 (2012)

    Article  Google Scholar 

  18. Sardini, E., Serpelloni, M.: Self-powered wireless sensor for air temperature and velocity measurements with energy harvesting capability. IEEE Trans. Instrum. Measur. 60(5) (2011)

    Google Scholar 

  19. Sardini, E., Serpelloni, M.: Passive and self-powered autonomous sensors for remote measurements. Sensors 9, 943–960 (2009)

    Article  Google Scholar 

  20. Gilbert, J.M., Balouchi, F.: Comparison of energy harvesting systems for wireless sensor networks. Int. J. Autom. Comput. 05(4), 334–347 (2008)

    Article  Google Scholar 

  21. Zuo, L., Tang, X.: Large-scale vibration energy harvesting. J. Intell. Mater. Syst. Struct. 24(11), 1405–1430 (2013)

    Article  Google Scholar 

  22. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

    Article  Google Scholar 

  23. Jasiulek, D., Stankiewicz, K., Jagoda, J.: Możliwości zastosowania czujników samozasilających się przeznaczonych do pracy w podziemiach kopalń (in Polish). Mechanizacja i Automatyzacja Górnictwa. Nr 8(519), 73–80 (2013)

    Google Scholar 

  24. Jasiulek, D.: Alternative sensors power source used in mining. ITG KOMAG Gliwice (not published) (2012)

    Google Scholar 

  25. Jasiulek, D.: Propozycje zastosowania czujników samozasilających się w przemyśle wydobywczym (in Polish). Przegląd Górniczy 1 (2014)

    Google Scholar 

  26. Woszczyński, M., Świder, J.: Use of the system for energy recuperation and control in diesel machines. Mach. Dyn. Res. 38(1) (2014)

    Google Scholar 

  27. Wang, D.-A., Pham, H.-T., Chao, C.-W., Chen, J.M.: A piezoelectric energy harvester based on pressure fluctuations in Kármán Vortex Street. In: World Renewable Energy Congress, Linkoping, Sweden, 8–13 May 2011. Hydropower Applications (2011)

    Google Scholar 

  28. Cunefare, K.A., Skow, E.A., Erturk, A., Savor, J., Verma, N., Cacan, M.R.: Energy harvesting from hydraulic pressure fluctuations. Smart Mater. Struct. 22 (2013)

    Google Scholar 

  29. Żólkiewski, S.: Vibrations of beams with a variable cross-section fixed on rotational rigid disks. Latin Am. J. Solids Struct. 10, 39–57 (2013)

    Google Scholar 

  30. Bai, P., Zhu, G., Lin, Z.-H., Jing, Q., Chen, J., Zhang, G., Ma, J., Wang, Z.L.: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7, 3713–3719 (2013)

    Article  Google Scholar 

  31. Prabaharan, R., Jayaramaprakash, A., VijayAnand, L.: Power harvesting by using human foot step. Int. J. Innov. Res. Sci. Eng. Technol. 2(7) (2013)

    Google Scholar 

  32. Stankiewicz, K., Woszczyński, M.: Metody odzyskiwania i przetwarzania energii cieplnej (in Polish). Maszyny Górnicze nr 1, 39–46 (2010)

    Google Scholar 

  33. Jaworski, B., Dietłaf, A., Miłkowska, L.: Kurs fizyki. T. II: Elektryczność i magnetyzm (in Polish). Warszawa: Państwowe Wydawnictwo Naukowe (1984)

    Google Scholar 

  34. Glynne-Jones, P., Tudor, M.J., Beeby, S.P., White, N.M.: An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens. Actuators A 110, 344–349 (2004)

    Article  Google Scholar 

  35. Shena, H., Qiu, J., Balsi, M.: Vibration damping as a result of piezoelectric energy harvesting. Sens. Actuators A, 169, pp. 178–186 (2011)

    Google Scholar 

  36. Catalogue card of MIDE V21BL-ND transducer (www.mide.com)

  37. Aboulfotoha, N.A., Arafab, M.H., Megahed, S.M.: A self-tuning resonator for vibration energy harvesting. Sens. Actuators A 201, 328–334 (2013)

    Article  Google Scholar 

  38. Radkowski, S., Lubikowski, K., Piątak, A.: Vibration energy harvesting in the transportation system: a review. Diagnostyka—Appl. Struct. Health Usage Condition Monit. 4(64) (2012)

    Google Scholar 

  39. Challa, V.R., Prasad, M.G., Fisher, F.T.: Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater. Struct. 20 (2011)

    Google Scholar 

  40. Tang, X., Zuo, L.: Simultaneous energy harvesting and vibration control of structures with tuned mass dampers. J. Intell. Mater. Syst. Struct. 23(18), 2117–2127 (2012)

    Article  Google Scholar 

  41. Jia, Y., Seshia, A.A.: An auto-parametrically excited vibration energy harvester. Sens. Actuators A 220, 69–75 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Jasiulek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jasiulek, D. (2016). Testing the Piezoelectric Energy Harvester’s Deflection on the Amount of Generated Energy. In: Awrejcewicz, J., Kaliński, K., Szewczyk, R., Kaliczyńska, M. (eds) Mechatronics: Ideas, Challenges, Solutions and Applications. Advances in Intelligent Systems and Computing, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-319-26886-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26886-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26885-9

  • Online ISBN: 978-3-319-26886-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics