HIV-Associated Hodgkin Lymphoma

  • Marcus HentrichEmail author
  • Michele Spina
  • Silvia Montoto


Hodgkin lymphoma (HL) is one of the most common non-AIDS-defining malignancies in patients infected with HIV. Unfavorable features such as higher frequency of advanced-stage disease and extranodal involvement are frequently encountered. Prior to the advent of combined antiretroviral therapy (cART), the prognosis of patients with HIV-HL was poor. However, with standard curative-intent therapy and modern cART, the outcome is similar to that reported in the general population. In patients with early favorable HL two cycles of ABVD followed by involved-field radiation (IF-RT) is considered standard of care. Patients with early unfavorable HL should receive four cycles of ABVD + IF-RT while six cycles of ABVD or six cycles of BEACOPP baseline should be given to patients with advanced HIV-HL.


Overall Survival Hodgkin Lymphoma Autologous Stem Cell Transplantation Immune Reconstitution Inflammatory Syndrome Brentuximab Vedotin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Clifford GM, Polesel J, Rickenbach M, et al. Cancer risk in the Swiss HIV cohort study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005;97:425–32.CrossRefPubMedGoogle Scholar
  2. 2.
    Biggar RJ, Jaffe ES, Goedert JJ, et al. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood. 2006;108:3786–91.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Serraino D, Piselli P, Busnach G, et al. Risk of cancer following immunosuppression in organ transplant recipients and in HIV-positive individuals in southern Europe. Eur J Cancer. 2007;43:2117–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Engels EA, Biggar RJ, Hall HI, et al. Cancer risk in people infected with human immunodeficiency virus in the United States. Int J Cancer. 2008;123:187–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Patel P, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992–2003. Ann Intern Med. 2008;148:728–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Powles T, Robinson D, Stebbing J, et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol. 2009;27(6):884–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Seaberg EC, Wiley D, Martínez-Maza O, et al. Cancer incidence in the Multicenter AIDS Cohort Study before and during the HAART era: 1984–2007. Cancer. 2010;116:5507–16.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Franceschi S, Lise M, Clifford GM, et al. Changing patterns of cancer incidence in the early- and late-HAART periods: the Swiss HIV Cohort Study. Br J Cancer. 2010;103:416–22.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Silverberg MJ, Chao C, Leyden WA, et al. HIV infection, immunodeficiency, viral replication, and the risk of cancer. Cancer Epidemiol Biomarkers Prev. 2011;20:2551–9.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Calabresi A, Ferraresi A, Festa A, et al. Incidence of AIDS-defining cancers and virus-related and non-virus-related non-AIDS-defining cancers among HIV-infected patients compared with the general population in a large health district of northern Italy, 1999–2009. HIV Med. 2013;14:481–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Wiggill TM, Mantina H, Willem P, et al. Changing pattern of lymphoma subgroups at a tertiary academic complex in a high-prevalence HIV setting: a South African perspective. J Acquir Immune Defic Syndr. 2011;56:460–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Shiels MS, Koritzinsky EH, Clarke CA, et al. Prevalence of HIV infection among U.S. Hodgkin lymphoma cases. Cancer Epidemiol Biomarkers Prev. 2014;23:274–81.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Spina M, Gabarre J, Rossi G, et al. Stanford V regimen and concomitant HAART in 59 patients with Hodgkin disease and HIV infection. Blood. 2002;100:1984–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Hentrich M, Berger M, Wyen C, et al. Stage-adapted treatment of HIV-associated Hodgkin lymphoma: results of a prospective multicenter study. J Clin Oncol. 2012;30(33):4117–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Montoto S, Shaw K, Okosun J, et al. HIV status does not influence outcome in patients with classical Hodgkin lymphoma treated with chemotherapy using doxorubicin, bleomycin, vinblastine, and dacarbazine in the highly active antiretroviral therapy era. J Clin Oncol. 2012;30:4111–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Gopal S, Patel MR, Yanik EL, et al. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J Natl Cancer Inst. 2013;105(16):1221–9.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Gotti D, Danesi M, Calabresi A, et al. Clinical characteristics, incidence, and risk factors of HIV-related Hodgkin lymphoma in the era of combination antiretroviral therapy. AIDS Patient Care STDS. 2013;27(5):259–65.CrossRefPubMedGoogle Scholar
  18. 18.
    Castillo JJ, Bower M, Brühlmann J, et al. Prognostic factors for advanced-stage Human Immunodeficiency Virus-associated classical Hodgkin Lymphoma treated with doxorubicin, bleomycin, vinblastine, and dacarbazine plus combined antiretroviral therapy. Cancer. 2015;121:423–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Guiguet M, Boue F, Cadranel J, et al. Effect of immunodeficiency, HIV viral load, and antiretroviral therapy on the risk of individual malignancies (FHDH-ANRS CO4): a prospective cohort study. Lancet Oncol. 2009;10(12):1152–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Bohlius J, Schmidlin K, Boué F, et al. Therapy: incidence and evolution of CD4 + T-cell lymphocytes HIV-1-related Hodgkin lymphoma in the era of combination antiretroviral. Blood. 2011;117(23):6100–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Lanoy E, Rosenberg PS, Fily F, et al. HIV-associated Hodgkin lymphoma during the first months on combination antiretroviral therapy. Blood. 2011;118:44–9.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Hoffmann C, Hentrich M, Gillor D, et al. Hodgkin lymphoma is as common as non-Hodgkin lymphoma in HIV-positive patients with sustained viral suppression and limited immune deficiency: a prospective cohort study. HIV Med. 2015;16:261–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Yanik EL, Napravnik S, Cole SR, et al. Incidence and timing of cancer in HIV-infected individuals following initiation of combination antiretroviral therapy. Clin Infect Dis. 2013;57(5):756–64.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Kowalkowski MA, Mims MP, Amiran ES, et al. Effect of immune reconstitution on the incidence of HIV-related Hodgkin lymphoma. PLoS One. 2013;8(10):e77409.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Gopal S, Patel MR, Achenbach CJ, et al. Lymphoma immune reconstitution inflammatory syndrome in the center for AIDS research network of integrated clinical systems cohort. Clin Infect Dis. 2014;59(2):279–86.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Kowalkowski MA, Mims MA, Day RS, et al. Longer duration of combination antiretroviral therapy reduces the risk of Hodgkin lymphoma: a cohort study of HIV-infected male veterans. Cancer Epidemiol. 2014;38(4):386–92.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Gupta RK, Marks M, Edwards SG, et al. A declining CD4 count and diagnosis of HIV-associated Hodgkin lymphoma: do prior clinical symptoms and laboratory abnormalities aid diagnosis? PLoS One. 2014;9(2):e87442.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Helleberg M, Kronborg G, Larsen CS, et al. CD4 Decline is associated with increased risk of cardiovascular disease, cancer, and death in virally suppressed patients with HIV. Clin Inf Dis. 2013;57:314–21.CrossRefGoogle Scholar
  29. 29.
    Herndier BG, Sanchez HC, Chang KL, et al. High prevalence of Epstein-Barr virus in the Reed-Sternberg cells of HIV associated Hodgkin’s disease. Am J Pathol. 1993;142(4):1073–9.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Tirelli U, Errante D, Dolcetti R, et al. Hodgkin’s disease and human immunodeficiency virus infection: clinicopathologic and virologic features of 114 patients from the Italian Cooperative Group on AIDS and Tumors. J Clin Oncol. 1995;13(7):1758–67.PubMedGoogle Scholar
  31. 31.
    Xicoy B, Ribera J-M, Miralles P, et al. Results of treatment with doxorubicin, bleomycin, vinblastine and dacarbazine and highly active antiretroviral therapy in advanced stage, human immunodeficiency virus-related Hodgkin’s lymphoma. Haematologica. 2007;92:191–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Carbone A, Gloghini A, Larocca LM, et al. Human immunodeficiency virus associated Hodgkin’s disease derives from post-germinal center B cells. Blood. 1999;93:2319–26.PubMedGoogle Scholar
  33. 33.
    Dolcetti R, Boiocchi M, Gloghini A, Carbone A. Pathogenetic and histogenetic features of HIV-associated Hodgkin’s disease. Eur J Cancer. 2001;37(10):1276–87.CrossRefPubMedGoogle Scholar
  34. 34.
    Carbone A, Gloghini A, Dotti G. EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist. 2008;13:577–85.CrossRefPubMedGoogle Scholar
  35. 35.
    Morales O, Mrizak D, Francois V, et al. Epstein-Barr virus infection induces an increase of T regulatory type 1 cells in Hodgkin lymphoma patients. Br J Haematol. 2014;166(6):875–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Hartmann S, Jakobus C, Rengstl B, et al. Spindle-shaped CD163+ rosetting macrophages replace CD4+ T-cells in HIV-related classical Hodgkin lymphoma. Mod Pathol. 2013;26(5):648–57.CrossRefPubMedGoogle Scholar
  37. 37.
    Koulis A, Trivedi P, Ibrahim H, et al. The role of the microenvironment in human immunodeficiency virus-associated classical Hodgkin Lymphoma. Histopathology. 2014;65(6):749–56.CrossRefPubMedGoogle Scholar
  38. 38.
    Bosch Princep R, Lejeune M, Salvado Usach MT, et al. Decreased number of granzyme B+ activated CD8+ cytotoxic T lymphocytes in the inflammatory background of HIV-associated Hodgkin’s lymphoma. Ann Hematol. 2005;84(10):661–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Goshen E, Davidson T, Avigdor A, et al. PET/CT in the evaluation of lymphoma in patients with HIV-1 with suppressed viral loads. Clin Nucl Med. 2008;33:610–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Lucignani G, Orunesu E, Cesari M, et al. FDG-PET imaging in HIV-infected subjects: relation with therapy and immunovirological variables. Eur J Nucl Med Mol Imaging. 2009;36(4):640–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Valour F, Sénéchal A, Chidiac C, Ferry T. Chronic HIV-1 infection mimicking splenic malignant lymphoma on F-18 FDG-PET/CT. BMJ Case Rep. 2012. doi: 10.1136/bcr.11.2011.5195.Google Scholar
  42. 42.
    Mhlanga JC, Durand D, Tsai HL, et al. Differentiation of HIV-associated lymphoma from HIV-associated reactive adenopathy using quantitative FDG PET and symmetry. Eur J Nucl Med Mol Imaging. 2014;41(4):596–604.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Sathekge M. Differentiation of HIV-associated lymphoma from HIV-reactive adenopathy using quantitative FDG-PET and symmetry. Eur J Nucl Med Mol Imaging. 2014;41(4):593–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Liu L. Concurrent FDG, avid nasopharyngeal lesion and generalized lymphadenopathy on PET-CT imaging is indicative of lymphoma in patients with HIV infection. AIDS Res Treat. 2012;2012:764291. Epub 2012 Sep 6.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Errante D, Tirelli U, Gastaldi R, et al. Combined antineoplastic and antiretroviral therapy for patients with Hodgkin’s disease and human immunodeficiency virus infection. A prospective study of 17 patients. The Italian Cooperative Group on AIDS and Tumors (GICAT). Cancer. 1994;73(2):437–44.CrossRefPubMedGoogle Scholar
  46. 46.
    Errante D, Gabarre J, Ridolfo AL, et al. Hodgkin’s disease in 35 patients with HIV infection: an experience with epirubicin, bleomycin, vinblastine and prednisone chemotherapy in combination with antiretroviral therapy and primary use of G-CSF. Ann Oncol. 1999;10(2):189–95.CrossRefPubMedGoogle Scholar
  47. 47.
    Levine AM, Li P, Cheung T, et al. Chemotherapy consisting of doxorubicin, bleomycin, vinblastine, and dacarbazine with granulocyte colony-stimulating factor in HIV-infected patients with newly diagnosed Hodgkin’s disease: a prospective, multi-institutional AIDS clinical trials group study (ACTG 149). J Acquir Immune Defic Syndr. 2000;24(5):444–50.CrossRefPubMedGoogle Scholar
  48. 48.
    Ribera J-M, Navarro J-T, Oriol A, et al. Prognostic impact of highly active antiretroviral therapy in HIV-related Hodgkin’s disease. AIDS. 2002;16:1973–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Gérard L, Galicier L, Boulanger E, Quint L, Lebrette MG, et al. Improved survival in HIV-related Hodgkin’s lymphoma since the introduction of highly active antiretroviral therapy. AIDS. 2003;17:81–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Hoffmann C, Chow KU, Wolf E, Faetkenheuer G, Stellbrink HJ, et al. Strong impact of highly active antiretroviral therapy on survival in patients with human immunodeficiency virus-associated Hodgkin’s disease. Br J Haematol. 2004;124:455–62.CrossRefGoogle Scholar
  51. 51.
    Hentrich M, Maretta L, Chow KU, Bogner JR, Schürmann D, et al. Highly active antiretroviral therapy (HAART) improves survival in HIV-associated Hodgkin’s disease: results of a multicenter study. Ann Oncol. 2006;17:914–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Berenguer J, Miralles P, Ribera JM, et al. Characteristics and outcome of AIDS related Hodgkin Lymphoma before and after the introduction of highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2008;47:422–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Xicoy B, Ribera J-M, Miralles P, et al. Limited prognostic value of the International Prognostic Score in advanced stage human immunodeficiency virus infection-related Hodgkin lymphoma treated with the doxorubicin, bleomycin, vinblastine, and dacarbazine regimen. Leuk Lymph. 2009;50:1718–20.CrossRefGoogle Scholar
  54. 54.
    Spina M, Ribera J-M, Gabarre J, et al. Hodgkin’s disease and HIV infection (HD-HIV): prognostic factors in 596 patients (pts) within the European Group for the Study of HIV and Tumours (GECAT). Blood. 2010;116:3883. abstr.Google Scholar
  55. 55.
    Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379:1791–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Spina M, Gabarre J, Mancuso S, et al. Long term results of Stanford V regimen and highly active antiretroviral therapy (HAART) in 59 patients (pts) with HD and HIV-infection (HD-HIV). Haematologica. 2011;96(s2):322. abstr. 0773.Google Scholar
  57. 57.
    Hartmann P, Rehwald U, Salzberger B, et al. BEACOPP therapeutic regimen for patients with Hodgkin’s disease and HIV infection. Ann Oncol. 2003;14(10):1562–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Spina M, Antinori A, Bibas M, et al. VEBEP regimen in patients (pts) with HD and HIV infection (HIV-HD): final results of a phase II study of the italian cooperative group on AIDS and Tumors (GICAT). Haematologica. 2011;96(s2):320. abstr. 0768.Google Scholar
  59. 59.
    Engert A, Plütschow A, Eich HT, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):640–52.CrossRefPubMedGoogle Scholar
  60. 60.
    Hentrich M, Hoffmann C, Mosthaf F, et al. Therapy of HIV-associated lymphoma -recommendations of the oncology working group of the German Study Group of Physicians in Private Practice Treating HIV-Infected Patients (DAGNÄ), in cooperation with the German AIDS Society (DAIG). Ann Hematol. 2014;93(6):913–21.CrossRefPubMedGoogle Scholar
  61. 61.
    Bower M, Palfreeman A, Alfa-Wali M, et al. British HIV association guidelines for HIV-associated malignancies 2014. HIV Med. 2014;15 Suppl 2:1–92.Google Scholar
  62. 62.
    Kaplan LD. Management of HIV-associated Hodgkin lymphoma: how far we have come. J Clin Oncol. 2012;30(33):4056–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Uldrick TS, Little RF. How I treat classical Hodgkin lymphoma in patients infected with human immunodeficiency virus. Blood. 2015;125:1226–35.CrossRefPubMedGoogle Scholar
  64. 64.
    Gopal S, Patel MR, Yanik EL, et al. Association of early HIV viremia with mortality after HIV-associated lymphoma. AIDS. 2013;27(15):2365–73.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    European AIDS Clinical Society guidelines Version 7.1 Nov 2014. Part II: ART in HIV-positive persons.
  66. 66.
    Cingolani A, Torti L, Pinnetti C, et al. Detrimental clinical interaction between ritonavir-boosted protease inhibitors and vinblastine in HIV-infected patients with Hodgkin’s lymphoma. AIDS. 2010;24:2408–12.PubMedGoogle Scholar
  67. 67.
    Balsalobre P, Diez-Martin JL, Re A, et al. Autologous stem cell transplantation in patients with HIV-related lymphoma. J Clin Oncol. 2009;27:2192–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Diez-Martin JL, Balsalobre P, Re A, et al. Comparable survival between HIV+ and HIV- non-Hodgkin and Hodgkin lymphoma patients undergoing autologous peripheral blood stem cell transplantation. European Group for Blood and Marrow Transplantation Lymphoma Working Party. Blood. 2009;113:6011–4.CrossRefPubMedGoogle Scholar
  69. 69.
    Krishnan A, Palmer JM, Zaia JA, et al. HIV status does not affect the outcome of autologous stem cell transplantation (ASCT) for non-Hodgkin lymphoma (NHL). Biol Blood Marrow Transplant. 2010;16:1302–8.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Re A, Cattaneo C, Skert C, et al. Stem cell mobilization in HIV seropositive patients with lymphoma. Haematologica. 2013;98:1762–8.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Gallamini A, Barrington SF, Biggi A, et al. The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica. 2014;99(6):1107–13.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Hutchings M, Kostakoglu L, Zaucha JM, et al. In vivo treatment sensitivity testing with positron emission tomography/computed tomography after one cycle of chemotherapy for Hodgkin lymphoma. J Clin Oncol. 2014;32(25):2705–11.CrossRefPubMedGoogle Scholar
  73. 73.
    Okosun J, Warbey V, Shaw K, et al. Interim fluoro-2-deoxy-D-glucose-PET predicts response and progression-free survival in patients with Hodgkin lymphoma and HIV infection. AIDS. 2012;26:861–5.CrossRefPubMedGoogle Scholar
  74. 74.
    Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Younes A, Connors JM, Park SI, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14(13):1348–56.CrossRefPubMedGoogle Scholar
  76. 76.
    Ghandi M, Petrich A. Brentuximab vedotin in patients with relapsed HIV-related lymphoma. J Natl Compr Canc Netw. 2014;12:16–9.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marcus Hentrich
    • 1
    Email author
  • Michele Spina
    • 2
  • Silvia Montoto
    • 3
  1. 1.Department of Hematology and OncologyRed Cross Hospital, University of MunichMunichGermany
  2. 2.Division of Medical Oncology ANational Cancer InstituteAvianoItaly
  3. 3.Centre for Haemato-OncologySt Bartholomew’s Hospital, Barts Cancer Institute, Queen Mary University of LondonLondonUK

Personalised recommendations