HIV-Associated Primary Effusion Lymphoma

  • Heather A. LeitchEmail author
  • Eric Oksenhendler


In 1995, Cesarman and colleagues examined the DNA of 193 lymphomas from 42 patients with AIDS to 151 patients who did not have HIV infection. KSHV/HHV-8 DNA sequences were identified in eight lymphomas from HIV-infected patients. All eight, and only these eight, were body-cavity-based lymphomas as characterized by pleural, pericardial, and/or peritoneal lymphomatous effusions, defining an unusual subgroup of AIDS-associated B-cell lymphomas. They also showed that in all cases, the neoplastic cells were coinfected with EBV and designated this entity as primary effusion lymphoma (PEL). In 2001, PEL was included as a distinct entity in the World Health Organization (WHO) classification of neoplastic diseases of the hematopoietic and lymphoid tissues. PEL may also present as “extracavitary mass lesions without effusions”, commonly in the gastrointestinal tract. This is referred to as the solid variant of PEL which shares morphologic, immunophenotypic, and virologic features with classic PEL, allowing the recognition of these entities as part of the spectrum of PEL.


Anaplastic Large Cell Lymphoma Brentuximab Vedotin Primary Effusion Lymphoma Multicentric Castleman Disease Primary Effusion Lymphoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. Laura Kuyper described the features, treatment, and outcome of five patients with HIV-NHL treated at St. Paul’s Hospital in the ART era in 2009.

Dr. Musa Al-Zahrani described the features, treatment, and outcome of 12 patients with HIV/(HHV-8)-related multicentric Castleman disease in 2012 and critically reviewed this manuscript.


  1. 1.
    Cesarman E, Chang Y, Moore PS, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332(18):1186–91.CrossRefPubMedGoogle Scholar
  2. 2.
    Nador RG, Cesarman E, Chadburn A, et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood. 1996;88(2):645–56.PubMedGoogle Scholar
  3. 3.
    Said J, Cesarman E. Primary effusion lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues (4th ed). Lyon: International Agency for Research on Cancer; 2008.Google Scholar
  4. 4.
    Levine AM. Management of AIDS-related lymphoma. Curr Opin Oncol. 2008;20(5):522–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Carbone A, Gloghini A, Vaccher E, et al. Kaposi’s sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma. J Mol Diagn. 2005;7(1):17–27.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Mylona E, Baraboutis IG, Georgiou O, et al. Solid variant of primary effusion lymphoma in successfully treated HIV infection: a case report. Int J STD AIDS. 2008;19(8):570–2.CrossRefPubMedGoogle Scholar
  7. 7.
    Chadburn A, Hyjek E, Mathew S, et al. KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol. 2004;28(11):1401–16.CrossRefPubMedGoogle Scholar
  8. 8.
    Carbone A, Gloghini A. KSHV/HHV8-associated lymphomas. Br J Haematol. 2008;140(1):13–24.PubMedGoogle Scholar
  9. 9.
    Gloghini A, Dolcetti R, Carbone A. Lymphomas occurring specifically in HIV-infected patients: from pathogenesis to pathology. Semin Cancer Biol. 2013;23(6):457–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Simonelli C, Spina M, Cinelli R, et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol. 2003;21(21):3948–54.CrossRefPubMedGoogle Scholar
  11. 11.
    Boulanger E, Gerard L, Gabarre J, et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol. 2005;23(19):4372–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Oksenhendler E, Clauvel JP, Jouveshomme S, Davi F, Mansour G. Complete remission of a primary effusion lymphoma with antiretroviral therapy. Am J Hematol. 1998;57(3).Google Scholar
  13. 13.
    Hocqueloux L, Agbalika F, Oksenhendler E, Molina JM. Long-term remission of an AIDS-related primary effusion lymphoma with antiviral therapy. AIDS. 2001;15(2):280–2.CrossRefPubMedGoogle Scholar
  14. 14.
    Crum-Cianflone NF, Wallace MR, Looney D. Successful secondary prophylaxis for primary effusion lymphoma with human herpesvirus 8 therapy. AIDS. 2006;20(11):1567–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113(6):1213–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Gasperini P, Sakakibara S, Tosato G. Contribution of viral and cellular cytokines to Kaposi’s sarcoma-associated herpesvirus pathogenesis. J Leukoc Biol. 2008;84(4):994–1000.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Sunil M, Reid E, Lechowicz MJ. Update on HHV-8-associated malignancies. Curr Infect Dis Rep. 2010;12(2):147–54.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Miller G, Heston L, Grogan E, et al. Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol. 1997;71(1):314–24.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Carbone A. Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol. 2003;4(1):22–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Carbone A, Ceserman E, Gloghini A, Drexler H. Understanding pathogenetic aspects and clinical presentation of primary effusion lymphoma through its derived cell lines. AIDS. 2010;24(4):479–90.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Casper C, Krantz EM, Corey L, et al. Valganciclovir for suppression of human herpesvirus-8 replication: a randomized, double-blind, placebo-controlled, crossover trial. J Infect Dis. 2008;198(1):23–30.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Aoki Y, Tosato G, Nambu Y, Iwamoto A, Yarchoan R. Detection of vascular endothelial growth factor in AIDS-related primary effusion lymphomas. Blood. 2000;95(3):1109–10.PubMedGoogle Scholar
  23. 23.
    Aoki Y, Yarchoan R, Braun J, Iwamoto A, Tosato G. Viral and cellular cytokines in AIDS-related malignant lymphomatous effusions. Blood. 2000;96(4):1599–601.PubMedGoogle Scholar
  24. 24.
    Ammari ZA, Mollberg NM, Abdelhady K, Mansueto MD, Massad MG. Diagnosis and management of primary effusion lymphoma in the immunocompetent and immunocompromised hosts. Thorac Cardiovasc Surg. 2013;61(4):343–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Simonelli C, Tedeschi R, Gloghini A, et al. Plasma HHV-8 viral load in HHV-8-related lymphoproliferative disorders associated with HIV infection. J Med Virol. 2009;81(5):888–96.CrossRefPubMedGoogle Scholar
  26. 26.
    Antinori A, Cingolani A, Alba L, et al. Better response to chemotherapy and prolonged survival in AIDS-related lymphomas responding to highly active antiretroviral therapy. AIDS. 2001;15(12):1483–91.CrossRefPubMedGoogle Scholar
  27. 27.
    Besson C, Goubar A, Gabarre J, et al. Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood. 2001;98(8):2339–44.CrossRefPubMedGoogle Scholar
  28. 28.
    Chow KU, Mitrou PS, Geduldig K, et al. Changing incidence and survival in patients with aids-related non-Hodgkin’s lymphomas in the era of highly active antiretroviral therapy (HAART). Leuk Lymphoma. 2001;41(1–2):105–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Ezzat H, Filipenko D, Vickars L, et al. Improved survival in HIV-associated diffuse large B-cell lymphoma with the addition of rituximab to chemotherapy in patients receiving highly active antiretroviral therapy. HIV Clin Trials. 2007;8(3):132–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Kirk O, Pedersen C, Cozzi-Lepri A, et al. Non-Hodgkin lymphoma in HIV-infected patients in the era of highly active antiretroviral therapy. Blood. 2001;98(12):3406–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Matthews GV, Bower M, Mandalia S, et al. Changes in acquired immunodeficiency syndrome-related lymphoma since the introduction of highly active antiretroviral therapy. Blood. 2000;96(8):2730–4.PubMedGoogle Scholar
  32. 32.
    Navarro JT, Ribera JM, Oriol A, et al. Improved outcome of AIDS-related lymphoma in patients with virologic response to highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2003;32(3):347–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Vaccher E, di Gennaro G, Shioppa O, et al. Highly active antiretroviral therapy (HAART) significantly improves disease free survival (DFS) in patients (pts) with HIV-related non-Hodgkin’s lymphoma (HIV-NHL) treated with chemotherapy (CT). Proc ASCO. 2001;20(2):294a.Google Scholar
  34. 34.
    Little RF, Pittaluga S, Grant N, et al. Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology. Blood. 2003;101(12):4653–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Ripamonti D, Marini B, Rambaldi A, Suter F. Treatment of primary effusion lymphoma with highly active antiviral therapy in the setting of HIV infection. AIDS. 2008;22(10):1236–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen Y-B, Rahemtullah A, Hochberg E. Primary effusion lymphoma. Oncologist. 2007;12(5):569–76.CrossRefPubMedGoogle Scholar
  37. 37.
    Okada S, Goto H, Yotsumoto M. Current status of treatment for primary effusion lymphoma. Intractable Rare Dis Res. 2014;3(3):65–74.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Sparano JA, Lee S, Chen MG, et al. Phase II trial of infusional cyclophosphamide, doxorubicin, and etoposide in patients with HIV-associated non-Hodgkin’s lymphoma: an Eastern Cooperative Oncology Group Trial (E1494). J Clin Oncol. 2004;22(8):1491–500.CrossRefPubMedGoogle Scholar
  39. 39.
    Little RF, Merced-Galindez F, Staskus K, et al. A pilot study of cidofovir in patients with kaposi sarcoma. J Infect Dis. 2003;187(1):149–53.CrossRefPubMedGoogle Scholar
  40. 40.
    Casper C, Nichols WG, Huang ML, Corey L, Wald A. Remission of HHV-8 and HIV-associated multicentric Castleman disease with ganciclovir treatment. Blood. 2004;103(5):1632–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Halfdanarson TR, Markovic SN, Kalokhe U, Luppi M. A non-chemotherapy treatment of a primary effusion lymphoma: durable remission after intracavitary cidofovir in HIV negative PEL refractory to chemotherapy. Ann Oncol. 2006;17(12):1849–50.CrossRefPubMedGoogle Scholar
  42. 42.
    Luppi M, Trovato R, Barozzi P, et al. Treatment of herpesvirus associated primary effusion lymphoma with intracavity cidofovir. Leukemia. 2005;19(3):473–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Boulanger E, Daniel MT, Agbalika F, Oksenhendler E. Combined chemotherapy including high-dose methotrexate in KSHV/HHV8-associated primary effusion lymphoma. Am J Hematol. 2003;73(3):143–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Waddington TW, Aboulafia DM. Failure to eradicate AIDS-associated primary effusion lymphoma with high-dose chemotherapy and autologous stem cell reinfusion: case report and literature review. AIDS Patient Care STDS. 2004;18(2):67–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Bhatt S, Ashlock BM, Natkunam Y, et al. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood. 2013;122(7):1233–42.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Haque M, Kousoulas KG. The Kaposi’s sarcoma-associated herpesvirus ORF34 protein binds to HIF-1alpha and causes its degradation via the proteasome pathway. J Virol. 2013;87(4):2164–73.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Saji C, Higashi C, Niinaka Y, et al. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells. Biochem Biophys Res Commun. 2011;415(4):573–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Abou-Merhi R, Khoriaty R, Arnoult D, et al. PS-341 or a combination of arsenic trioxide and interferon-alpha inhibit growth and induce caspase-dependent apoptosis in KSHV/HHV-8-infected primary effusion lymphoma cells. Leukemia. 2007;21(8):1792–801.CrossRefPubMedGoogle Scholar
  49. 49.
    Matta H, Chaudhary PM. The proteasome inhibitor bortezomib (PS-341) inhibits growth and induces apoptosis in primary effusion lymphoma cells. Cancer Biol Ther. 2005;4(1):77–82.CrossRefPubMedGoogle Scholar
  50. 50.
    An J, Sun Y, Fisher M, Rettig MB. Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia. 2004;18(10):1699–704.CrossRefPubMedGoogle Scholar
  51. 51.
    Wu FY, Wang SE, Tang QQ, et al. Cell cycle arrest by Kaposi’s sarcoma-associated herpesvirus replication-associated protein is mediated at both the transcriptional and posttranslational levels by binding to CCAAT/enhancer-binding protein alpha and p21(CIP-1). J Virol. 2003;77(16):8893–914.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Dabaghmanesh N, Matsubara A, Miyake A, et al. Transient inhibition of NF-kappaB by DHMEQ induces cell death of primary effusion lymphoma without HHV-8 reactivation. Cancer Sci. 2009;100(4):737–46.CrossRefPubMedGoogle Scholar
  53. 53.
    Bhatt S, Ashlock BM, Toomey NL, et al. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest. 2013;123(6):2616–28.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Goto H, Kudo E, Kariya R, et al. Targeting VEGF and interleukin-6 for controlling malignant effusion of primary effusion lymphoma. J Cancer Res Clin Oncol. 2015;141(3):465–74.CrossRefPubMedGoogle Scholar
  55. 55.
    Haddad L, El Hajj H, Abou-Merhi R, et al. KSHV-transformed primary effusion lymphoma cells induce a VEGF-dependent angiogenesis and establish functional gap junctions with endothelial cells. Leukemia. 2008;22(4):826–34.CrossRefPubMedGoogle Scholar
  56. 56.
    Aoki Y, Tosato G. Vascular endothelial growth factor/vascular permeability factor in the pathogenesis of primary effusion lymphomas. Leuk Lymphoma. 2001;41(3–4):229–37.CrossRefPubMedGoogle Scholar
  57. 57.
    Bottero V, Sadagopan S, Johnson KE, et al. Kaposi’s sarcoma-associated herpesvirus-positive primary effusion lymphoma tumor formation in NOD/SCID mice is inhibited by neomycin and neamine blocking angiogenin’s nuclear translocation. J Virol. 2013;87(21):11806–20.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Paul AG, Sharma-Walia N, Chandran B. Targeting KSHV/HHV-8 latency with COX-2 selective inhibitor nimesulide: a potential chemotherapeutic modality for primary effusion lymphoma. PLoS One. 2011;6(9):e24379.CrossRefPubMedGoogle Scholar
  59. 59.
    Sun Z, Xiao B, Jha HC, et al. Kaposi’s sarcoma-associated herpesvirus-encoded LANA can induce chromosomal instability through targeted degradation of the mitotic checkpoint kinase Bub1. J Virol. 2014;88(13):7367–78.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Santag S, Jager W, Karsten CB, et al. Recruitment of the tumour suppressor protein p73 by Kaposi’s Sarcoma Herpesvirus latent nuclear antigen contributes to the survival of primary effusion lymphoma cells. Oncogene. 2013;32(32):3676–85.CrossRefPubMedGoogle Scholar
  61. 61.
    Chen W, Hilton IB, Staudt MR, Burd CE, Dittmer DP. Distinct p53, p53:LANA, and LANA complexes in Kaposi’s Sarcoma – associated Herpesvirus lymphomas. J Virol. 2010;84(8):3898–908.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Lan K, Murakami M, Bajaj B, et al. Inhibition of KSHV-infected primary effusion lymphomas in NOD/SCID mice by gamma-secretase inhibitor. Cancer Biol Ther. 2009;8(22):2136–43.CrossRefPubMedGoogle Scholar
  63. 63.
    Liu J, Martin HJ, Liao G, Hayward SD. The Kaposi’s sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J Virol. 2007;81(19):10451–9.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Bubman D, Guasparri I, Cesarman E. Deregulation of c-Myc in primary effusion lymphoma by Kaposi’s sarcoma herpesvirus latency-associated nuclear antigen. Oncogene. 2007;26(34):4979–86.CrossRefPubMedGoogle Scholar
  65. 65.
    An J, Sun Y, Rettig MB. Transcriptional coactivation of c-Jun by the KSHV-encoded LANA. Blood. 2004;103(1):222–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Fujimuro M, Hayward SD. The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus manipulates the activity of glycogen synthase kinase-3beta. J Virol. 2003;77(14):8019–30.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Katano H, Sato Y, Sata T. Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer. 2001;92(12):3076–84.CrossRefPubMedGoogle Scholar
  68. 68.
    Krithivas A, Young DB, Liao G, Greene D, Hayward SD. Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates Epstein-Barr virus gene expression in dually infected PEL cells. J Virol. 2000;74(20):9637–45.PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Ballestas ME, Chatis PA, Kaye KM. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science. 1999;284(5414):641–4.CrossRefPubMedGoogle Scholar
  70. 70.
    Gantt S, Casper C. Human herpesvirus 8-associated neoplasms: the roles of viral replication and antiviral treatment. Curr Opin Infect Dis. 2011;24(4):295–301.PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Klass CM, Krug LT, Pozharskaya VP, Offermann MK. The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood. 2005;105(10):4028–34.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Yu Y, Black JB, Goldsmith CS, et al. Induction of human herpesvirus-8 DNA replication and transcription by butyrate and TPA in BCBL-1 cells. J Gen Virol. 1999;80(Pt 1):83–90.CrossRefPubMedGoogle Scholar
  73. 73.
    Shaw RN, Arbiser JL, Offermann MK. Valproic acid induces human herpesvirus 8 lytic gene expression in BCBL-1 cells. AIDS. 2000;14(7):899–902.CrossRefPubMedGoogle Scholar
  74. 74.
    Boulanger E, Agbalika F, Maarek O, et al. A clinical, molecular and cytogenetic study of 12 cases of human herpesvirus 8 associated primary effusion lymphoma in HIV-infected patients. Hematol J. 2001;2(3):172–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Pastore RD, Chadburn A, Kripas C, Schattner EJ. Novel association of haemophagocytic syndrome with Kaposi’s sarcoma-associated herpesvirus-related primary effusion lymphoma. Br J Haematol. 2000;111(4):1112–5.CrossRefPubMedGoogle Scholar
  76. 76.
    Drexler HG, Meyer C, Gaidano G, Carbone A. Constitutive cytokine production by primary effusion (body cavity-based) lymphoma-derived cell lines. Leukemia. 1999;13(4):634–40.CrossRefPubMedGoogle Scholar
  77. 77.
    Asou H, Said JW, Yang R, et al. Mechanisms of growth control of Kaposi’s sarcoma-associated herpes virus-associated primary effusion lymphoma cells. Blood. 1998;91(7):2475–81.PubMedGoogle Scholar
  78. 78.
    Zhang YJ, Bonaparte RS, Patel D, Stein DA, Iversen PL. Blockade of viral interleukin-6 expression of Kaposi’s sarcoma-associated herpesvirus. Mol Cancer Ther. 2008;7(3):712–20.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Thapa DR, Li X, Jamieson BD, Martinez-Maza O. Overexpression of microRNAs from the miR-17-92 paralog clusters in AIDS-related non-Hodgkin’s lymphomas. PLoS One. 2011;6(6):e20781.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Sun Y, Huang PL, Li JJ, et al. Anti-HIV agent MAP30 modulates the expression profile of viral and cellular genes for proliferation and apoptosis in AIDS-related lymphoma cells infected with Kaposi’s sarcoma-associated virus. Biochem Biophys Res Commun. 2001;287(4):983–94.CrossRefPubMedGoogle Scholar
  81. 81.
    Sarek G, Kurki S, Enback J, et al. Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J Clin Invest. 2007;117(4):1019–28.PubMedCentralCrossRefPubMedGoogle Scholar
  82. 82.
    Otvos R, Skribek H, Kis LL, et al. Drug sensitivity patterns of HHV8 carrying body cavity lymphoma cell lines. BMC Cancer. 2011;11:441.PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Zhang YJ, Patel D, Nan Y, Fan S. Inhibition of primary effusion lymphoma engraftment in SCID mice by morpholino oligomers against early lytic genes of Kaposi’s sarcoma-associated herpesvirus. Antivir Ther. 2011;16(5):657–66.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.HematologySt. Paul’s Hospital and the University of British ColumbiaVancouverCanada
  2. 2.Department of Clinical ImmunologyHôpital Saint-Louis, AP-HP, and EA3963, University Paris DiderotParisFrance

Personalised recommendations