Advertisement

AIDS-Related Plasmablastic Lymphoma

  • Paul G. RubinsteinEmail author
  • Christoph Wyen
Chapter

Abstract

In 1997 a new entity was added to the World Health Organization (WHO) classification of lymphomas as a subset of diffuse large B cell lymphoma (DLBCL) called plasmablastic lymphoma (PBL). Its classification was prompted by its plasmacytoid appearance, with an elevated proliferation index, post-germinal phenotype with loss of the mature B cell markers, CD20, and strong expression of mature plasma cell antigens, i.e., CD138. The initial description was that this lymphoma affects primarily mucosal sites, particularly the oropharynx, and is characterized by poor outcome and is present predominantly in patients infected with HIV, though cases have also been reported in patients with advanced age or poor immune function. Here we examine the epidemiology, pathogenesis, diagnosis, and treatments for PBL and future directions to gain insight on how to better understand and manage this entity in patients infected with HIV.

Keywords

Overall Survival Chronic Lymphocytic Leukemia Burkitt Lymphoma Oncogenic Virus Plasma Cell Myeloma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.PubMedGoogle Scholar
  2. 2.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, World Health Organization. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008.Google Scholar
  3. 3.
    Bibas M, Castillo JJ. Current knowledge on HIV-associated plasmablastic lymphoma. Mediterr J Hematol Infect Dis. 2014;6(1):e2014064.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Castillo JJ, Bibas M, Miranda RN. The biology and treatment of plasmablastic lymphoma. Blood. 2015;125:2323–30.Google Scholar
  5. 5.
    Carbone A, Gloghini A, Larocca LM, Capello D, Pierconti F, Canzonieri V, Tirelli U, Dalla-Favera R, Gaidano G. Expression profile of MUM1/IRF4, BCL-6, and CD138/syndecan-1 defines novel histogenetic subsets of human immunodeficiency virus-related lymphomas. Blood. 2001;97(3):744–51.CrossRefPubMedGoogle Scholar
  6. 6.
    Colomo L, Loong F, Rives S, et al. Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. Am J Surg Pathol. 2004;28(6):736–47.CrossRefPubMedGoogle Scholar
  7. 7.
    Teruya-Feldstein J, Chiao E, Filippa DA, Lin O, Comenzo R, Coleman M, Portlock C, Noy A. CD20-negative large-cell lymphoma with plasmablastic features: a clinically heterogenous spectrum in both HIV-positive and -negative patients. Ann Oncol. 2004;15:1673–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Castillo J, Pantanowitz L, Dezube BJ. HIV-associated plasmablastic lymphoma: lessons learned from 112 published cases. Am J Hematol. 2008;83:804–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Shiels MS, Pfeiffer RM, Gail MH, Hall HI, Li J, Chaturvedi AK, et al. Cancer burden in the HIV-infected population in the United States. J Natl Cancer Inst. 2011;103(9):753–62.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Shiels MS, Pfeiffer RM, Hall HI, Li J, Goedert JJ, Morton LM, Hartge P, Engels EA. Proportions of Kaposi sarcoma, selected non-Hodgkin lymphomas, and cervical cancer in the United States occurring in persons with AIDS, 1980–2007. JAMA. 2011;305(14):1450–9.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Guech-Ongey M, Simard EP, Anderson WF, Engels EA, Bhatia K, Devesa SS, et al. AIDS-related Burkitt lymphoma in the United States: what do age and CD4 lymphocyte patterns tell us about etiology and/or biology? Blood. 2010;116:5600–4.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156(6):744.CrossRefPubMedGoogle Scholar
  13. 13.
    Carbone A, Gloghini A. Plasmablastic lymphoma: one or more entities? Am J Hematol. 2008;83:763–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Schommers P, Hentrich M, Hoffmann C, Gillor D, Zoufaly A, Jensen B, et al. Survival of AIDS-related diffuse large B-cell lymphoma, Burkitt lymphoma, and plasmablastic lymphoma in the German HIV lymphoma cohort. Br J Haematol. 2014. doi: 10.1111/bjh.13221.PubMedGoogle Scholar
  15. 15.
    Gupta S, Jain S, Sandhu S, Sreenivasappa S, Pattali S, Braik T, et al. A retrospective analysis of all hematological malignancies in patients infected with HIV, a subset analysis of the CHAMP study (Cook County Hospital (CCH) AIDS malignancy project). Blood (ASH Annu Meet Abstr). 2011;118:3693.Google Scholar
  16. 16.
    Castillo JJ, Winer ES, Stachurski D, Perez K, Jabbour M, Milani C, Colvin G, Butera JN. Clinical and pathological differences between human immunodeficiency virus-positive and human immunodeficiency virus-negative patients with plasmablastic lymphoma. Leuk Lymphoma. 2010;51:2047–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Castillo JJ, Furman M, Beltrán BE, Bibas M, Bower M, Chen W, et al. Human immunodeficiency virus-associated plasmablastic lymphoma: poor prognosis in the era of highly active antiretroviral therapy. Cancer. 2012;118(21):5270–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Chang H, Samiee S, Yi QL. Prognostic relevance of CD56 expression in multiple myeloma: a study including 107 cases treated with high-dose melphalan-based chemotherapy and autologous stem cell transplant. Leuk Lymphoma. 2006;47(1):43–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Vega F, Chang CC, Medeiros LJ, Udden MM, Cho-Vega JH, Lau CC, Finch CJ. Plasmablastic lymphomas and plasmablastic plasma cell myelomas have nearly identical immunophenotypic profiles. Mod Pathol. 2005;18(6):806–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Rubinstein PG, Aboulafia DM, Zloza A. Malignancies in HIV/AIDS: from epidemiology to therapeutic challenges. AIDS. 2014;28(4):453–65.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Folk GS, Abbondanzo SL, Childers EL, Foss RD. Plasmablastic lymphoma: a clinicopathologic correlation. Ann Diagn Pathol. 2006;10(1):8–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Bogusz AM, Seegmiller AC, Garcia R, Shang P, Ashfaq R, Chen W. Plasmablastic lymphomas with MYC/IgH rearrangement: report of three cases and review of the literature. Am J Clin Pathol. 2009;132(4):597–605.CrossRefPubMedGoogle Scholar
  23. 23.
    Taddesse-Heath L, Meloni-Ehrig A, Scheerle J, Kelly JC, Jaffe ES. Plasmablastic lymphoma with MYC translocation: evidence for a common pathway in the generation of plasmablastic features. Mod Pathol. 2010;23(7):991–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Valera A, Balague O, Colomo L, et al. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas. Am J Surg Pathol. 2010;34(11):1686–94.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013;122(24):3884–91.CrossRefPubMedGoogle Scholar
  26. 26.
    McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. Biochim Biophys Acta. 2008;1782:127–50.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Ambinder RF. Epstein-Barr virus associated lymphoproliferations in the AIDS setting. Eur J Cancer. 2001;37:1209–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Carbone A, Tirelli U, Gloghini A, Volpe R, Boiocchi M. Human immunodeficiency virus-associated systemic lymphomas may be subdivided into two main groups according to Epstein-Barr viral latent gene expression. J Clin Oncol. 1993;11:1674–81.PubMedGoogle Scholar
  29. 29.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Qi P, Han JX, Lu YQ, Wang C, Bu FF. Virus-encoded microRNAs: future therapeutic targets? Cell Mol Immunol. 2006;3:411–9.PubMedGoogle Scholar
  31. 31.
    Yeung ML, Bennasser Y, Le SY, Jeang KT. siRNA, miRNA and HIV: promises and challenges. Cell Res. 2005;15:935–46.CrossRefPubMedGoogle Scholar
  32. 32.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Pfeffer S, Voinnet O. Viruses, microRNAs and cancer. Oncogene. 2006;25:6211–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Montes-Moreno S, Gonzalez-Medina AR, Rodriguez-Pinilla SM, et al. Aggressive large B-cell lymphoma with plasma cell differentiation: immunohistochemical characterization of plasmablastic lymphoma and diffuse large B-cell lymphoma with partial plasmablastic phenotype. Haematologica. 2010;95(8):1342–9.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Schmelz M, Montes-Moreno S, Piris M, et al. Lack and/or aberrant localization of major histocompatibility class II (MHCII) protein in plasmablastic lymphoma. Haematologica. 2012;97(10):1614–6.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Hart LS, Cunningham JT, Datta T, et al. ER stress-mediated autophagy promotes myc-dependent transformation and tumor growth. J Clin Invest. 2012;122(12):4621–34.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Avet-Loiseau H, Gerson F, Magrangeas F, et al. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood. 2001;98(10):3082–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Noy A, Cahdburn A, Lensing SY, Moore P. Plasmablastic lymphoma is curable the HAART Era. A 10 year retrospective by the AIDS malignancy consortium (AMC). American Society of Hematology National meeting. Blood. 2013;122:1801.Google Scholar
  39. 39.
    Ibrahim IF, Shapiro GA, Naina HVK. Treatment of HIV-associated plasmablastic lymphoma: a single-center experience with 25 patients. J Clin Oncol. 2014;32:5s. suppl; abstr 8583.CrossRefGoogle Scholar
  40. 40.
    Lee LX, Konda B, Assal A, Zell MI, Braunshweig I, Derman O, et al. Plasmablastic lymphoma: a case series of the changing epidemiology of a rare extramedullary plasmacytoid neoplasm, diagnostic challenges, and therapeutic implications. Blood. 2014;124:2995.Google Scholar
  41. 41.
    Schommers P, Wyen C, Hentrich M, Gillor D, Zoufaly A, Jensen B, et al. Poor outcome of HIV-infected patients with plasmablastic lymphoma: results from the German AIDS-related lymphoma cohort study. AIDS. 2013;27(5):842–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Barta SK, Xue X, Wang D, Tamari R, Lee JY, Mounier N, Kaplan LD, et al. Treatment factors affecting outcomes in HIV-associated non-Hodgkin lymphomas: a pooled analysis of 1546 patients. Blood. 2013;122(19):3251–62.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Castillo JJ, Winer ES, Stachurski D, Perez K, Jabbour M, Milani C, et al. Prognostic factors in chemotherapy-treated patients with HIV-associated plasmablastic lymphoma. Oncologist. 2010;15(3):293–9.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Reid EG. Bortezomib-induced Epstein-Barr virus and Kaposi sarcoma herpesvirus lytic gene expression: oncolytic strategies. Curr Opin Oncol. 2011;23(5):482–7.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Hui KF, Ho DN, Tsang CM, Middeldorp JM, Tsao GS, Chiang AK. Activation of lytic cycle of Epstein-Barr virus by suberoylanilide hydroxamic acid leads to apoptosis and tumor growth suppression of nasopharyngeal carcinoma. Int J Cancer. 2012;131(8):1930–40.CrossRefPubMedGoogle Scholar
  46. 46.
    Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A, et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood. 2012;120(5):947–59.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Dunleavy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N, et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood. 2009;113:6069–76.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Copeland A, Buglio D, Younes A. Histone deacetylase inhibitors in lymphoma. Curr Opin Oncol. 2010;22(5):431–6.CrossRefPubMedGoogle Scholar
  49. 49.
  50. 50.
  51. 51.
    Bhatt V1, Alejandro L, Michael A, Ganetsky A. The promising impact of ibrutinib, a Bruton’s tyrosine kinase inhibitor, for the management of lymphoid malignancies. Pharmacotherapy. 2014;34:303–14.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Section of Hematology/Oncology, Department of MedicineJohn H. Stroger Jr. Hospital of Cook County (Cook County Hospital)ChicagoUSA
  2. 2.Rush University Medical CenterChicagoUSA
  3. 3.The Ruth M. Rothstein CORE CenterChicagoUSA
  4. 4.First Department of Internal MedicineUniversity of CologneCologneGermany

Personalised recommendations