Advertisement

Myeloproliferative Neoplasms

  • Ryan C. Fang
  • David M. AboulafiaEmail author
Chapter

Abstract

Human immunodeficiency virus (HIV) infection is linked to an increased risk of both acquired immunodeficiency syndrome (AIDS)-defining malignancies (ADMs) and non-AIDS-defining malignancies (nADMs). One subset of these nADMs are myeloproliferative neoplasms (MPNs), in which there is an overproduction of red blood cells (RBCs), platelets, or a subset of white blood cells (WBCs). Many patients with MPNs are asymptomatic at the time of medical evaluation, and their diagnosis is established after routine blood testing reveals an anomaly. Others present to medical attention complaining of headache, fatigue, weight loss, and early satiety in the backdrop of splenomegaly, bleeding, and thrombotic complications and clonal evolution.

Keywords

Human Immunodeficiency Virus Chronic Myeloid Leukemia Human Immunodeficiency Virus Infection Polycythemia Vera Essential Thrombocythemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Konopka JB, Witte ON. Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol. 1985;5(11):3116–23.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Reilly JT. Pathogenetic insight and prognostic information from standard and molecular cytogenetic studies in the BCR-ABL-negative myeloproliferative neoplasms (MPNs). Leukemia. 2008;22(10):1818–27.CrossRefPubMedGoogle Scholar
  3. 3.
    Bench AJ, et al. Molecular diagnosis of the myeloproliferative neoplasms: UK guidelines for the detection of JAK2 V617F and other relevant mutations. Br J Haematol. 2013;160(1):25–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Kleppe M, et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015;5(3):316–31.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Tefferi A, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1874–81.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Tefferi A, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood. 2007;110(4):1092–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Cervantes F, et al. Chronic myeloid leukemia of thrombocythemic onset: a CML subtype with distinct hematological and molecular features? Leukemia. 1996;10(7):1241–3.PubMedGoogle Scholar
  8. 8.
    Pozdnyakova O, et al. Impact of bone marrow pathology on the clinical management of Philadelphia chromosome-negative myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk. 2015;15(5):253–61.CrossRefPubMedGoogle Scholar
  9. 9.
    What are the key statistics about chronic myeloid leukemia? www.cancer.org/cancer/leukemia-chronicmyeloidcml/detailedguide/leukemia-chronic-myeloidmyelogenous-key-statistics. Accessed Nov. 29, 2015.
  10. 10.
    Bacarani M. International Journal of Hematologic Oncology Treatment of chronic myeloid leukemia, which drugs? How long? How much? Intern J Hematol Oncol. 2015;4(3):93–102.Google Scholar
  11. 11.
    NCCN. Clinical practice guidelines in oncology: chronic myelogenous leukemia. J Natl Compr Canc Netw. 2013;11:1327–40.Google Scholar
  12. 12.
    Gambacorti-Passerini C, Piazza R. Imatinib-a new tyrosine kinase inhibitor for first-line treatment of chronic myeloid leukemia in 2015. JAMA Oncol. 2015;1(2):143–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Hughes T, White D. Which TKI? An embarrassment of riches for chronic myeloid leukemia patients. Hematol Am Soc Hematol Educ Prog. 2013;2013:168–75.CrossRefGoogle Scholar
  14. 14.
    Patel M, et al. Human immunodeficiency virus infection and chronic myeloid leukemia. Leuk Res. 2012;36(11):1334–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Schlaberg R, et al. Chronic myeloid leukemia and HIV-infection. Leuk Lymphoma. 2008;49(6):1155–60.CrossRefPubMedGoogle Scholar
  16. 16.
    Tuljipurkar V, Phatak U. Human immunodeficiency virus infection in a patient with chronic myeloid leukemia. Indian J Med Paediatr Oncol. 2013;34:323–6.CrossRefGoogle Scholar
  17. 17.
    Hagiwara S, et al. Non-AIDS-defining hematological malignancies in HIV-infected patients: an epidemiological study in Japan. AIDS. 2013;27(2):279–83.CrossRefPubMedGoogle Scholar
  18. 18.
  19. 19.
    Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet. 2005;44(9):879–94.CrossRefPubMedGoogle Scholar
  20. 20.
    Inoue T, et al. Lifetime treatment of mice with azidothymidine (AZT) produces myelodysplasia. Leukemia. 1997;11 Suppl 3:123–7.PubMedGoogle Scholar
  21. 21.
    Ahmed M, Begum T, Iroegbu N. Serum nilotinib level monitoring during concomitant use of CYP3A4 inhibitors. J Invest Med. 2015;63(156):369.Google Scholar
  22. 22.
    Berlin N. Diagnosis and classification of polycythemias. Semin Hematol. 1975;12:339.PubMedGoogle Scholar
  23. 23.
    Ania BJ, et al. Trends in the incidence of polycythemia vera among Olmsted County, Minnesota residents, 1935–1989. Am J Hematol. 1994;47(2):89–93.CrossRefPubMedGoogle Scholar
  24. 24.
    Polycythemia vera facts. Leukemia & Lymphoma Society. www.lls.org/sites/default/files/file_assets/FS13_PolycythemiaVera_FactSheet_final5.1.15.pdf. Accessed Nov. 29, 2015.
  25. 25.
    Krsak M, et al. Myocardial infarction, stroke, and mortality in cART-treated HIV patients on statins. AIDS Patient Care STDS. 2015;29(6):307–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Crum-Cianflone NF, Weekes J, Bavaro M. Review: thromboses among HIV-infected patients during the highly active antiretroviral therapy era. AIDS Patient Care STDS. 2008;22(10):771–8.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Spivak JL, Silver RT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: an alternative proposal. Blood. 2008;112(2):231–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Vorkas CK, Vaamonde CM, Glesby MJ. Testosterone replacement therapy and polycythemia in HIV-infected patients. AIDS. 2012;26(2):243–5.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Rose SR, et al. Etiology of thrombocytosis in a general medicine population: analysis of 801 cases with emphasis on infectious causes. J Clin Med Res. 2012;4(6):415–23.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Battian R, Ottaviano Porcelli M, Distenfeld A. Polycythemia in patients with AIDS. Lancet. 1990;335:1342–3.CrossRefGoogle Scholar
  31. 31.
    Hentrich M, et al. Acute myelogenous leukaemia and myelomonocytic blast crisis following polycythemia vera in HIV positive patients: report of cases and review of the literature. Ann Oncol. 2000;11(2):195–200.CrossRefPubMedGoogle Scholar
  32. 32.
    Sassaki MG, et al. Polycythemia vera in a patient with the human immunodeficiency virus: a case report. Braz J Infect Dis. 2000;4(4):204–7.PubMedGoogle Scholar
  33. 33.
    Streiff MB, Smith B, Spivak JL. The diagnosis and management of polycythemia vera in the era since the Polycythemia Vera Study Group: a survey of American Society of Hematology members’ practice patterns. Blood. 2002;99(4):1144–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Landolfi R, Marchioli R. European collaboration on low-dose aspirin in polycythemia vera (ECLAP): a randomized trial. Semin Thromb Hemost. 1997;23(5):473–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Landolfi R, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350(2):114–24.CrossRefPubMedGoogle Scholar
  36. 36.
    Cervantes F, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122(25):4047–53.CrossRefPubMedGoogle Scholar
  37. 37.
    Dupuy F, et al. JAK inhibitors tofacitinib and ruxolitinib block T-cell activation mediated HIV replication. Top Antivir Med. 2014;22(e-1):182–3.Google Scholar
  38. 38.
    Wysham NG, Sullivan DR, Allada G. An opportunistic infection associated with ruxolitinib, a novel janus kinase 1, 2 inhibitor. Chest. 2013;143(5):1478–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Vannucchi AM, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Ruggeri M, et al. The rate of progression to polycythemia vera or essential thrombocythemia in patients with erythrocytosis or thrombocytosis. Ann Intern Med. 2003;139(6):470–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Ruggeri M, et al. No treatment for low-risk thrombocythaemia: results from a prospective study. Br J Haematol. 1998;103(3):772–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhan H, Spivak JL. The diagnosis and management of polycythemia vera, essential thrombocythemia, and primary myelofibrosis in the JAK2 V617F era. Clin Adv Hematol Oncol. 2009;7(5):334–42.PubMedGoogle Scholar
  43. 43.
    Santos FP, et al. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood. 2010;115(6):1131–6.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Deeg HJ, et al. Allogeneic hematopoietic stem cell transplantation for myelofibrosis. Blood. 2003;102(12):3912–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Guardiola P, et al. Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a European Group for Blood and Marrow Transplantation, Societe Francaise de Greffe de Moelle, Gruppo Italiano per il Trapianto del Midollo Osseo, and Fred Hutchinson Cancer Research Center Collaborative Study. Blood. 1999;93(9):2831–8.PubMedGoogle Scholar
  46. 46.
    Rondelli D, et al. Allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning in intermediate- or high-risk patients with myelofibrosis with myeloid metaplasia. Blood. 2005;105(10):4115–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Cervantes F, et al. Danazol treatment of idiopathic myelofibrosis with severe anemia. Haematologica. 2000;85(6):595–9.PubMedGoogle Scholar
  48. 48.
    Cervantes F, et al. Erythropoietin treatment of the anaemia of myelofibrosis with myeloid metaplasia: results in 20 patients and review of the literature. Br J Haematol. 2004;127(4):399–403.CrossRefPubMedGoogle Scholar
  49. 49.
    Mesa RA, et al. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood. 2003;101(7):2534–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Tefferri A. Polycythemia vera and essential thrombocythemia: 2015 update on diagnosis, risk-stratification and management. Am J Hematol. 2015;90(2):162–73. doi:  10.1002/ajh.23895.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Section of Hematology and OncologyVirginia Mason Medical CenterSeattleUSA
  2. 2.Division of HematologyUniversity of WashingtonSeattleUSA

Personalised recommendations