Advertisement

Multiple Myeloma and Monoclonal Gammopathy of Unknown Significance

  • Manfred HenselEmail author
Chapter

Abstract

HIV-infected individuals have a higher risk to develop both a monoclonal gammopathy (MG) and a multiple myeloma (MM) as compared to the general population. If a MG appears with a low M spike without other symptoms and signs, it is called MG of undetermined significance (MGUS). The prevalence of MG among HIV infected patients in the HAART era is 3–5 %.

The pathophysiology of the development of a monoclonal gammopathy in the context of HIV is complex, it is associated with an abnormal function and unspecific polyclonal activation of B-cells. The correlation of MG in HIV infected patients with morbidity and mortality and the association with the development of myeloma and lymphoma is unclear. MM is a rare disease in HIV-infected individuals and patients with AIDS. The clinical presentation of MM is more aggressive, it occurs at younger age, often as solitary bone or extramedullary plasmocytoma, and sometimes as plasma cell leukemia. The M-protein is often low. The aggressiveness is reflected by the rapid progression, short overall survival and histopathology with atypical or anaplastic features.

MG in the HIV-infected patients should be followed up closely, without specific treatment. HIV-related myeloma should be treated according to the guidelines of MM in the general population. In our experience, all currently used treatment protocols for patients with MM, including bortezomib, thalidomide, lenalidomide and dexamethasone, are feasible and adequately tolerated in HIV-infected patients. Even high-dose chemotherapy with autologous stem cell transplantation should be considered.

Keywords

Multiple Myeloma Autologous Stem Cell Transplantation Monoclonal Gammopathy Mixed Cryoglobulinemia Plasma Cell Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR, Dispenzieri A, Katzmann JA, Melton 3rd LJ. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med. 2006;354(13):1362–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, Melton 3rd LJ. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346(8):564–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Coker WJ, Jeter A, Schade H, Kang Y. Plasma cell disorders in HIV-infected patients: epidemiology and molecular mechanisms. Biomark Res. 2013;1(1):8.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Briault S, Courtois-Capella M, Duarte F, Aucouturier P, Preud’Homme JL. Isotype of serum monoclonal immunoglobulins in human immunodeficiency virus-infected adults. Clin Exp Immunol. 1988;74(2):182–4.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Konstantinopoulos PA, Dezube BJ, Pantanowitz L, Horowitz GL, Beckwith BA. Protein electrophoresis and immunoglobulin analysis in HIV-infected patients. Am J Clin Pathol. 2007;128(4):596–603.CrossRefPubMedGoogle Scholar
  6. 6.
    van Vuuren MJ, Zemlin AE, Germishuys JJ. Monoclonal gammopathy and other serum protein electrophoresis patterns in patients with HIV infection in South Africa. Ann Clin Biochem. 2010;47(Pt 4):366–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Amara S, Dezube BJ, Cooley TP, Pantanowitz L, Aboulafia DM. HIV -associated monoclonal gammopathy: a retrospective analysis of 25 patients. Clin Infect Dis. 2006;43(9):1198–205.CrossRefPubMedGoogle Scholar
  8. 8.
    Lefrère JJ, Debbia M, Lambin P. Prospective follow-up of monoclonal gammopathies in HIV-infected individuals. Br J Haematol. 1993;84(1):151–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Ng VL, Chen KH, Hwang KM, Khayam-Bashi H, McGrath MS. The clinical significance of human immunodeficiency virus type 1-associated paraproteins. Blood. 1989;74(7):2471–5.PubMedGoogle Scholar
  10. 10.
    Landgren O, Goedert JJ, Rabkin CS, Wilson WH, Dunleavy K, Kyle RA, Katzmann JA, Rajkumar SV, Engels EA. Circulating serum free light chains as predictive markers of AIDS-related lymphoma. J Clin Oncol. 2010;28(5):773–9.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Bibas M, Trotta MP, Cozzi-Lepri A, Lorenzini P, Pinnetti C, Rizzardini G, Angarano G, Caramello P, Sighinolfi L, Mastroianni CM, Mazzarello G, Di Caro A, Di Giacomo C, d’Arminio Monforte A, Antinori A, ICONA Foundation Study Group. Role of serum free light chains in predicting HIV-associated non-Hodgkin lymphoma and Hodgkin’s lymphoma and its correlation with antiretroviral therapy. Am J Hematol. 2012;87(8):749–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Frisch M, Biggar RJ, Engels EA, Goedert JJ, AIDS-Cancer Match Registry Study Group. Association of cancer with AIDS-related immunosuppression in adults. JAMA. 2001;285(13):1736–45.CrossRefPubMedGoogle Scholar
  13. 13.
    Engels EA, Pfeiffer RM, Goedert JJ, Virgo P, McNeel TS, Scoppa SM, Biggar RJ, HIV/AIDS Cancer Match Study. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS. 2006;20(12):1645–54.CrossRefPubMedGoogle Scholar
  14. 14.
    Grulich AE, Li Y, McDonald A, Correll PK, Law MG, Kaldor JM. Rates of non-AIDS-defining cancers in people with HIV infection before and after AIDS diagnosis. AIDS. 2002;16(8):1155–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Dal Maso L, Franceschi S, Polesel J, Braga C, Piselli P, Crocetti E, Falcini F, Guzzinati S, Zanetti R, Vercelli M, Rezza G, Cancer and AIDS Registy Linkage Study. Risk of cancer in persons with AIDS in Italy, 1985–1998. Br J Cancer. 2003;89(1):94–100.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Clifford GM, Polesel J, Rickenbach M, Dal Maso L, Keiser O, Kofler A, Rapiti E, Levi F, Jundt G, Fisch T, Bordoni A, De Weck D, Franceschi S, Swiss HIV Cohort. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005;97(6):425–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Newnham A, Harris J, Evans HS, Evans BG, Møller H. The risk of cancer in HIV-infected people in southeast England: a cohort study. Br J Cancer. 2005;92(1):194–200.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59–67.CrossRefPubMedGoogle Scholar
  19. 19.
    Bladé J, Kyle RA. Multiple myeloma in young patients: clinical presentation and treatment approach. Leuk Lymphoma. 1998;30(5–6):493–501.PubMedGoogle Scholar
  20. 20.
    Feller L, White J, Wood NH, Bouckaert M, Lemmer J, Raubenheimer EJ. Extramedullary myeloma in an HIV-seropositive subject. Literature review and report of an unusual case. Head Face Med. 2009;5:4.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Aboulafia DM. Thalidomide-based treatment for HIV-associated multiple myeloma: a case report. AIDS Read. 2003;13(8):383–9.PubMedGoogle Scholar
  22. 22.
    Dezube BJ, Aboulafia DM, Pantanowitz L. Plasma cell disorders in HIV-infected patients: from benign gammopathy to multiple myeloma. AIDS Read. 2004;14(7):372–4, 377–9.PubMedGoogle Scholar
  23. 23.
    Miyagishima T, Tateno T, Kasahara KH, Sawada K, Sogabe S, Oda H. Successful treatment of an HIV-positive multiple myeloma patient with high-dose chemotherapy followed by autologous peripheral blood stem cell transplantation and maintenance therapy with lenalidomide. Rinsho Ketsueki. 2013;54(7):664–9.PubMedGoogle Scholar
  24. 24.
    Kentos A, Vekemans M, Van Vooren JP, Lambermont M, Liesnard C, Feremans W, Farber CM. High-dose chemotherapy and autologous CD34-positive blood stem cell transplantation for multiple myeloma in an HIV carrier. Bone Marrow Transplant. 2002;29(3):273–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Cauda R, Lucia MB, Marasca G, Rutella S, Petrucci MT, La Verde G, Gastaldi R. Beneficial effect of highly active antiretroviral therapy (HAART) in reducing both HIV viral load and monoclonal gammopathy. Eur J Haematol. 1999;63(2):134–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Sorli ML, Gimeno E, Abella E, Besses C, Knobel H. Smoldering myeloma in HIV patient: a complete remission after antiretroviral therapy. Leuk Res. 2008;32(9):1482–3.CrossRefPubMedGoogle Scholar
  27. 27.
    Li G, Lewis RD, Mishra N, Axiotis CA. A retrospective analysis of ten symptomatic multiple myeloma patients with HIV infection: a potential therapeutic effect of HAART in multiple myeloma. Leuk Res. 2014;38(9):1079–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Kawabata S, Gills JJ, Mercado-Matos JR, Lopiccolo J, Wilson 3rd W, Hollander MC, Dennis PA. Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells. Cell Death Dis. 2012;3:e353.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Kraus M, Bader J, Overkleeft H, Driessen C. Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance. Blood Cancer J. 2013;3:e103.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Ikezoe T, Saito T, Bandobashi K, Yang Y, Koeffler HP, Taguchi H. HIV-1 protease inhibitor induces growth arrest and apoptosis of human multiple myeloma cells via inactivation of signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2. Mol Cancer Ther. 2004;3(4):473–9.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mannheimer Onkologie PraxisHämatologie, Onkologie, Infektiologie, PalliativmedizinMannheimGermany

Personalised recommendations