Homonym Population Protocols

  • Olivier BournezEmail author
  • Johanne Cohen
  • Mikaël Rabie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9466)


Angluin et al. introduced Population protocols as a model in which n passively mobile anonymous finite-state agents stably compute a predicate on the multiset of their inputs via interactions by pairs. The model has been extended by Guerraoui and Ruppert to yield the community protocol models where agents have unique identifiers but may only store a finite number of the identifiers they already heard about. The Population protocol model only computes semi-linear predicates, whereas the community protocol model provides the power of a Turing machine with a \(O(n\log n)\) space.

We consider variations on the above models and we obtain a whole landscape that covers and extends already known results. By considering the case of homonyms, that is to say the case when several agents may share the same identifier, we provide a hierarchy that goes from the case of no identifier (population protocol model) to the case of unique identifiers (community protocol model).

We obtain in particular that any Turing Machine on space \(O(\log ^{O(1)} n)\) can be simulated with at least \(O(\log ^{O(1)} n)\) identifiers, a result filling a gap left open in all previous studies.

Our results also extend and revisit in particular the hierarchy provided by Chatzigiannakis et al. on population protocols carrying Turing Machines on limited space, solving the problem of the gap left by this work between per-agent space \(o(\log \log n)\) (proved to be equivalent to population protocols) and \(O(\log n)\) (proved to be equivalent to Turing machines).


  1. 1.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: Twenty-Third ACM Symposium on Principles of Distributed Computing, pp. 290–299. ACM Press (2004)Google Scholar
  4. 4.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  5. 5.
    Arévalo, S., Fernández Anta, A., Imbs, D., Jiménez, E., Raynal, M.: Failure detectors in homonymous distributed systems (with an application to consensus). In: 2012 IEEE 32nd International Conference on Distributed Computing Systems (ICDCS), pp. 275–284 (2012)Google Scholar
  6. 6.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Bulletin of the EATCS, vol. 93, pp. 106–125 (2007)Google Scholar
  7. 7.
    Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating machines that use restricted space. Theoret. Comput. Sci. 412(46), 6469–6483 (2011). please check and confirm inserted volume number and page range is correct in Ref. [7]MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Algorithmic verification of population protocols. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 221–235. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A., Ruppert, E., Tran-The, H.: Byzantine agreement with homonyms. In: 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2011, pp. 21–30 (2011)Google Scholar
  10. 10.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die: making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  11. 11.
    Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Homonyms with forgeable identifiers. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 171–182. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Di Luna, G.A., Baldoni, R., Bonomi, S., Chatzigiannakis, I.: Counting the number of homonyms in dynamic networks. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 311–325. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents can tolerate byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 484–495. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Immerman, N.: Nondeterministic space is closed under complementation. In: Structure in Complexity Theory Conference, Third Annual, pp. 112–115. IEEE (1988)Google Scholar
  15. 15.
    Schönhage, A.: Storage modification machines. SIAM J. Comput. 9(3), 490–508 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Inf. 26(3), 279–284 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LIXEcole PolytechniquePalaiseau CedexFrance
  2. 2.LRIUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations