Advertisement

Distributed Privacy-Preserving Data Aggregation via Anonymization

  • Yahya BenkaouzEmail author
  • Mohammed Erradi
  • Bernd Freisleben
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9466)

Abstract

Data aggregation is a key element in many applications that draw insights from data analytics, such as medical research, smart metering, recommendation systems and real-time marketing. In general, data is gathered from several sources, processed, and publicly released for data analysis. Since the considered data might contain personal and sensitive information, special handling of private data is required.

In this paper, we present a novel distributed privacy-preserving data aggregation protocol, called ADiPA. It relies on anonymization techniques for protecting personal data, such as k-anonymity, l-diversity and t-closeness. Its purpose is to allow a set of entities to derive aggregate results from data tables that are partitioned across these entities in a fully decentralized manner while preserving the privacy of their individual sensitive inputs. ADiPA neither relies on a trusted third party nor on cryptographic techniques. The protocol performs accurate aggregation when communication links and nodes do not fail.

Keywords

Data aggregation Privacy Anonymization 

References

  1. 1.
    Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Anonymizing tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 246–258. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  2. 2.
    Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Approximation algorithms for k-anonymity. In: Proceedings of the International Conference on Database Theory (ICDT 2005), November 2005Google Scholar
  3. 3.
    Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, pp. 217–228. IEEE Computer Society, Washington, DC (2005)Google Scholar
  4. 4.
    Benkaouz, Y., Erradi, M.: A distributed protocol for privacy preserving aggregation. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 221–232. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-anonymity. In: Yu, T., Jajodia, S. (eds.) Secure Data Management in Decentralized Systems. Advances in Information Security, vol. 33, pp. 323–353. Springer, US (2007)CrossRefGoogle Scholar
  6. 6.
    Di Vimercati, S.D.C., Foresti, S., Livraga, G., Samarati, P.: Data privacy: definitions and techniques. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 20(06), 793–817 (2012)CrossRefGoogle Scholar
  7. 7.
    Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and privacy preservation. In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, pp. 205–216. IEEE Computer Society, Washington, DC (2005)Google Scholar
  8. 8.
    Golle, P.: Revisiting the uniqueness of simple demographics in the us population. In: WPES 2006, Alexandria, Virginia, USA, October 30, 2006Google Scholar
  9. 9.
    Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 279–288. ACM, New York (2002)Google Scholar
  10. 10.
    LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD 2005, pp. 49–60. ACM, New York (2005)Google Scholar
  11. 11.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: ICDE 2007, IEEE 23rd International Conference on Data Engineering, 2007, pp. 106–115, April 2007Google Scholar
  12. 12.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)CrossRefGoogle Scholar
  13. 13.
    Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2004, pp. 223–228. ACM, New York (2004)Google Scholar
  14. 14.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  15. 15.
    Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical report, CMU, SRI (1998)Google Scholar
  16. 16.
    Sweeney, L.: Uniqueness of simple demographics in the U.S. population. Technical report, Carnegie Mellon University, Laboratory for International Data Privacy (2000)Google Scholar
  17. 17.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sweeney, L.: Guaranteeing anonymity when sharing medical data, the datafly system. In: Journal of the American Medical Informatics Association. Hanley and Belfus Inc, Washington, DC (1997)Google Scholar
  19. 19.
    Winkler, W.E.: Using simulated annealing for k-anonymity. Technical report, Statistical Research Division, U.S. Bureau of the Census, Washington D.C. (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yahya Benkaouz
    • 1
    Email author
  • Mohammed Erradi
    • 1
  • Bernd Freisleben
    • 2
  1. 1.Networking and Distributed Systems Research GroupENSIAS, Mohammed V UniversityRabatMorocco
  2. 2.Department of Mathematics and Computer SciencePhilipps-Universität MarburgMarburgGermany

Personalised recommendations