Concurrency in Snap-Stabilizing Local Resource Allocation

  • Karine Altisen
  • Stéphane Devismes
  • Anaïs DurandEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9466)


In distributed systems, resource allocation consists in managing fair access of a large number of processes to a typically small number of reusable resources. As soon as the number of available resources is greater than one, the efficiency in concurrent accesses becomes an important issue, as a crucial goal is to maximize the utilization rate of resources. In this paper, we tackle the concurrency issue in resource allocation problems. We first characterize the maximal level of concurrency we can obtain in such problems by proposing the notion of maximal-concurrency. Then, we focus on Local Resource Allocation problems (LRA). Our results are both negative and positive. On the negative side, we show that it is impossible to obtain maximal-concurrency in LRA without compromising the fairness. On the positive side, we propose a snap-stabilizing LRA algorithm which achieves a high (but not maximal) level of concurrency, called here strong partial maximal-concurrency.


Critical Section Mutual Exclusion Resource Allocation Problem Transient Fault Resource Allocation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-stabilizing leader election in polynomial steps. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 106–119. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Altisen, K., Devismes, S.: On probabilistic snap-stabilization. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 272–286. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  3. 3.
    Altisen, K., Devismes, S., Durand, A.: Concurrency in Snap-Stabilizing Local Resource Allocation. Research report, VERIMAG, December 2014.
  4. 4.
    Arora, A., Gouda, M.G.: Distributed reset. IEEE Trans. Comput. 43(9), 1026–1038 (1994)CrossRefzbMATHGoogle Scholar
  5. 5.
    Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local mutual exclusion and daemon refinement. Chicago J. Theor. Comput. Sci. 2002, 1–19 (2002)Google Scholar
  6. 6.
    Bonakdarpour, B., Devismes, S., Petit, F.: Snap-stabilizing comittee coordination. In: IPDPS, pp. 231–242 (2011)Google Scholar
  7. 7.
    Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: PODC, pp. 150–159 (2004)Google Scholar
  8. 8.
    Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and PIF in tree networks. Dist. Comp. 20(1), 3–19 (2007)zbMATHGoogle Scholar
  9. 9.
    Cantarell, S., Datta, A.K., Petit, F.: Self-stabilizing atomicity refinement allowing neighborhood concurrency. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 102–112. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  10. 10.
    Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of fundamental protocols. ACM TAAS 4(1), 1–27 (2009)CrossRefGoogle Scholar
  11. 11.
    Datta, A.K., Hadid, R., Villain, V.: A self-stabilizing token-based k-out-of-l-exclusion algorithm. Concurrency Comput. Pract. Exp. 15(11–12), 1069–1091 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Datta, A.K., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token circulation in arbitrary rooted networks. Dist. Comp. 13(4), 207–218 (2000)CrossRefGoogle Scholar
  13. 13.
    Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal space under an arbitrary scheduler. Theor. Comput. Sci. 412(40), 5541–5561 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dijkstra, E.W.: Solution of a problem in concurrent programming control. Commun. ACM 8(9), 569 (1965)CrossRefGoogle Scholar
  15. 15.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefzbMATHGoogle Scholar
  16. 16.
    Dijkstra, E.W.: Two Starvation-Free Solutions of a General Exclusion Problem. Technical report EWD 625, Plataanstraat 5, 5671, AL Nuenen, The Netherlands (1978)Google Scholar
  17. 17.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  18. 18.
    Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems. Chicago J. Theor. Comput. Sci. 3, 1–40 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fischer, M.J., Lynch, N.A., Burns, J.E., Borodin, A.: Resource allocation with immunity to limited process failure (Preliminary Report). In: FOCS, pp. 234–254 (1979)Google Scholar
  20. 20.
    Gouda, M.G., Haddix, F.F.: The alternator. Dist. Comp. 20(1), 21–28 (2007)CrossRefzbMATHGoogle Scholar
  21. 21.
    Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness assumption. In: ICDCS, p. 46 (2007)Google Scholar
  22. 22.
    Huang, S.: The fuzzy philosophers. In: IPDPS, pp. 130–136 (2000)Google Scholar
  23. 23.
    Huang, S., Chen, N.: Self-stabilizing depth-first token circulation on networks. Dist. Comp. 7(1), 61–66 (1993)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kakugawa, H., Yamashita, M.: Self-stabilizing local mutual exclusion on networks in which process identifiers are not distinct. In: SRDS, pp. 202–211 (2002)Google Scholar
  25. 25.
    Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Commun. ACM 17(8), 453–455 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. J. Parallel Distrib. Comput. 62(5), 766–791 (2002)CrossRefzbMATHGoogle Scholar
  27. 27.
    Raynal, M.: A distributed solution to the k-out of-M resources allocation problem. In: ICCI 1991, pp. 599–609 (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Karine Altisen
    • 1
  • Stéphane Devismes
    • 1
  • Anaïs Durand
    • 1
    Email author
  1. 1.VERIMAG UMR 5104Université Grenoble AlpesGrenobleFrance

Personalised recommendations