Understanding Cloud Storage Services Usage: A Practical Case Study

  • Daniela Oliveira
  • Paulo CarvalhoEmail author
  • Solange Rito Lima
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9466)


Cloud Storage services present several characteristics that turn current classification methods insufficient or too complex to apply, namely the use of dynamic communication ports and security protocols. This paper identifies appropriate techniques for cloud traffic classification and defines a model for processing cloud services traces, taking the University of Minho (UMinho) network as a practical case study. The obtained results, using a classification approach based on Tstat tool, provide global statistics regarding the most used Cloud Storage services at UMinho and characterize the corresponding traffic.


Cloud Service Cloud Storage Cloud Service Provider Content Delivery Network Traffic Classification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by FCT - Fundação para a Ciência e Tecnologia in the scope of the project: PEst-UID/CEC/00319/2013.


  1. 1.
    Aceto, G., Dainotti, A., de Donato, W., Pescapé, A.: Portload: taking the best of two worlds in traffic classification. In: IEEE INFOCOM Workshops, pp. 1–5 (2010)Google Scholar
  2. 2.
    Bermudez, I.N., Mellia, M., Munafò, M.M., Keralapura, R., Nucci, A.: DNS to the Rescue: discerning content and services in a tangled web. In: Proceedings of the 2012 ACM Conference on Internet Measurement Conference, IMC 2012, New York, USA, pp. 413–426 (2012)Google Scholar
  3. 3.
    Drago, I., Mellia, M., Munafò, M., Sperotto, A., Sadre, R., Pras, A.: Inside dropbox: understanding personal cloud storage services. In: Proceedings of the 2012 ACM Conference on Internet Measurement Conference, IMC 2012, New York, USA, pp. 481–494 (2012)Google Scholar
  4. 4.
    Finamore, A., Mellia, M., Meo, M., Munafò, M.M., Torino, P.D., Rossi, D.: Experiences of Internet traffic monitoring with Tstat. IEEE Netw. 25(3), 8–14 (2011)CrossRefGoogle Scholar
  5. 5.
    García-Dorado, J.L., Finamore, A., Mellia, M., Meo, M., Munafò, M.M.: Characterization of ISP traffic: trends, user habits, and access technology impact. IEEE Trans. Netw. Serv. Manage. 9(2), 142–155 (2012)CrossRefGoogle Scholar
  6. 6.
    Gringoli, F., Salgarelli, L., Dusi, M., Cascarano, N., Risso, F., Claffy, K.C.: GT: picking up the truth from the ground for internet traffic. SIGCOMM Comput. Commun. Rev. 39(5), 12–18 (2009)CrossRefGoogle Scholar
  7. 7.
    Karagiannis, T., Papagiannaki, K., Faloutsos, M.: Blinc: multilevel traffic classification in the dark. SIGCOMM Comput. Commun. Rev. 35(4), 229–240 (2005)CrossRefGoogle Scholar
  8. 8.
    Ramaswamy, R., Kencl, L., Iannaccone, G.: Approximate fingerprinting to accelerate pattern matching. In: Proceedings of the 6th ACM Internet Measurement Conference, IMC 2006, New York, USA, pp. 301–306 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daniela Oliveira
    • 1
  • Paulo Carvalho
    • 1
    Email author
  • Solange Rito Lima
    • 1
  1. 1.Departamento de Informática, Centro AlgoritmiUniversidade do MinhoBragaPortugal

Personalised recommendations