Memory Efficient Self-stabilizing Distance-k Independent Dominating Set Construction

  • Colette JohnenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9466)


We propose a memory efficient self-stabilizing protocol building distance-k independent dominating sets. A distance-k independent dominating set is a distance-k independent set and a distance-k dominating set(The protocol \(\mathcal {SID}\) was presented in a brief announcement at SSS’13.).

Our algorithm, named \(\mathcal {SID}\), is silent; it converges under the unfair distributed scheduler (the weakest scheduling assumption).

The protocol \(\mathcal {SID}\) is memory efficient : it requires only \(log(2((n+1)(k+1))^2)\) bits per node.

The correctness and the termination of the protocol \(\mathcal {SID}\) is proven.

The computation of the convergence time of the protocol \(\mathcal {SID}\) is an opened question.


Distributed algorithm Fault tolerance Self-stabilization Distance-k dominating set Distance-k independent set Distance-k independent dominating set Memory efficient 


  1. 1.
    Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster algorithm in mobile Ad Hoc networks. In: International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN 2005), pp. 436–441 (2005)Google Scholar
  2. 2.
    Bui, A., Clavière, S., Datta, A.K., Larmore, L.L., Sohier, D.: Self-stabilizing hierarchical construction of bounded size clusters. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 54–65. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: Self-stabilizing k-clustering algorithm for weighted graphs. J. Parallel Distrib. Comput. 70, 1159–1173 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Datta, A.K., Larmore, L.L., Vemula, P.: A self-stabilizing O(k)-time k-clustering algorithm. Comput. J. 53(3), 342–350 (2010)CrossRefGoogle Scholar
  5. 5.
    Larsson, A., Tsigas, P.: A self-stabilizing (k, r)-clustering algorithm with multiple paths for wireless Ad-hoc networks. In: IEEE 31th International Conference on Distributed Computing Systems, (ICDCS 2011), pp. 353–362. IEEE Computer Society (2011)Google Scholar
  6. 6.
    Larsson, A., Tsigas, P.: Self-stabilizing (k,r)-clustering in clock rate-limited systems. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 219–230. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Datta, A., Devismes, S., Larmore, L.: A self-stabilizing \(o(n)\)-round \(k\)-clustering algorithm. In: 28th IEEE Symposium on Reliable Distributed Systems (SRDS 2009), pp. 147–155 (2009)Google Scholar
  8. 8.
    Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Self-stabilizing small k-dominating sets. Int. J. Networking Comput. 3(1), 116–136 (2013)Google Scholar
  9. 9.
    Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Competitive self-stabilizing k-clustering. In: IEEE 32th International Conference on Distributed Computing (ICDCS 2012), pp. 476–485 (2012)Google Scholar
  10. 10.
    Johnen, C.: Fast, silent self-stabilizing distance-k independent dominating set construction. Inf. Process. Lett. 114(10), 551–555 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Johnen, C.: Memory efficient self-stabilizing k-independent dominating set construction. Technical report RR-1473-13, Univ. Bordeaux, LaBRI, UMR 3800, F-33400 Talence, France, June 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University Bordeaux, LaBRI, UMR 5800TalenceFrance

Personalised recommendations