BaPu: Efficient and Practical Bunching of Access Point Uplinks

  • Tao Jin
  • Triet D. Vo-HuuEmail author
  • Erik-Oliver Blass
  • Guevara Noubir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9466)


Today’s throttled uplink of residential broadband renders a broad class of popular applications such as HD video uploading and large file transfer impractical. Aggregation of WiFi APs is one way to bypass this limitation. Motivated by this problem, we present BaPu (Bunching of Access Point Uplinks) to achieve two major goals: (1) support commodity clients by refraining from client modifications, (2) support both UDP and TCP based applications. We justify the need for client transparency and generic transport layer support and present new challenges. In particular, a naive multiplexing of a single TCP session through multiple paths results in a significant performance degradation. We describe BaPu’s mechanisms and design. We developed a prototype of BaPu with commodity hardware, and our extensive experiments show that BaPu aggregates up to 95 % of the total uplink capacity for UDP and 88 % for TCP.


Client Device Uplink Capacity Fast Retransmission Uplink Bandwidth Residential Broadband 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Open infrastructure: A wireless network research framework for residential networks.
  2. 2.
    Akamai. Akamai HD Network. Technical report (2011).
  3. 3.
    Allman, M., Paxson, V., Blanton, E.: Tcp congestion control (2009)Google Scholar
  4. 4.
    Bahl, P., Adya, A., Padhye, J., Walman, A.: Reconsidering wireless systems with multiple radios. SIGCOMM Compututer Communication Review 34, 39–46 (2004). ISSN 0146–4833Google Scholar
  5. 5.
    Balakrishnan, H., Seshan, S., Amir, E., Katz, R.H.: Improving TCP/IP performance over wireless networks. In: Proceedings of MobiCom (1995)Google Scholar
  6. 6.
    Balasubramanian, A., Mahajan, R., Venkataramani, A., Levine, B.N., Zahorjan, J.: Interactive wifi connectivity for moving vehicles. In: Proceedings of SigComm (2008)Google Scholar
  7. 7.
    Barré, S., Paasch, C., Bonaventure, O.: MultiPath TCP: from theory to practice. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.) NETWORKING 2011, Part I. LNCS, vol. 6640, pp. 444–457. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Chandra, R., Bahl, P.: Multinet: connecting to multiple IEEE 802.11 networks using a single wireless card. In: Proceedings of INFOCOM (2004)Google Scholar
  9. 9.
    FON. FON (2012).
  10. 10.
    Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for Multipath Operation with Multiple Addresses. Internet-Draft (2012)Google Scholar
  11. 11.
    Giustiniano, D., Goma, E. , Lopez, A., Rodriguez. P.: Wiswitcher: an efficient client for managing multiple aps. In: Proceedings of PRESTO (2009)Google Scholar
  12. 12.
    Giustiniano, D., Goma, E., Toledo, A.L., Dangerfield, I., Morillo, J., Rodriguez, P.: Fair WLAN backhaul aggregation. In: MobiCom (2010)Google Scholar
  13. 13.
    Hsieh, H.-Y., Sivakumar, R.: A transport layer approach for achieving aggregate bandwidths on multi-homed mobile hosts. In: Proceedings of MobiCom (2002)Google Scholar
  14. 14.
    Hsieh, H.-Y., Kim, K.-H., Zhu, Y., Sivakumar, R.: A receiver-centric transport protocol for mobile hosts with heterogeneous wireless interfaces. In: Proceedings of MobiCom (2003)Google Scholar
  15. 15.
    Jakubczak, S., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Seshan, S.: Link-alike: using wireless to share network resources in a neighborhood. SIGMOBILE Mobile Computing Communications Review (2008)Google Scholar
  16. 16.
    Anthony, J.N., Scott, W., Noble, B.D.: Juggler: virtual networks for fun and profit. IEEE Trans. Mob. Comput. 9, 31–43 (2010)CrossRefGoogle Scholar
  17. 17.
    Kandula, S., Lin, K.C., Badirkhanli, T., Katabi, D.: FatVAP: aggregating AP backhaul capacity to maximize throughput. In: Proceedings of NSDI (2008)Google Scholar
  18. 18.
    Kopparty, S., Krishnamurthy, S.V., Faloutsos, M., Tripathi, S.K.: Split tcp for mobile ad hoc networks. In: GLOBECOM (2002)Google Scholar
  19. 19.
    Magalhaes, L., Kravets, R.H.: Transport level mechanisms for bandwidth aggregation on mobile hosts. In: Proceedings of Conference on Network Protocols (2001)Google Scholar
  20. 20.
    Microsoft Research. Virtual wifi (2012).
  21. 21.
    Miu, A., Balakrishnan, H., Koksal, C.E.: Improving loss resilience with multi-radio diversity in wireless networks. In: MobiCom, pp. 16–30 (2005)Google Scholar
  22. 22.
    Miu, A.K., Tan, G., Balakrishnan, H., Apostolopoulos, J.: Divert: fine-grained path selection for wireless lans. In: Proceedings of MobiSys (2004)Google Scholar
  23. 23.
    Radunović, B., Gkantsidis, C., Gunawardena, D., Key, P.: Horizon: balancing TCP over multiple paths in wireless mesh network. In: MobiCom (2008)Google Scholar
  24. 24.
    Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., Handley, M.: Improving datacenter performance and robustness with multipath TCP. In: SIGCOMM 2011 (2011)Google Scholar
  25. 25.
    Soroush, H., Gilbert, P. , Banerjee, N., Levine, B.N., Corner, M., Cox, L.: Concurrent Wi-Fi for mobile users: analysis and measurements. In: CoNEXT (2011)Google Scholar
  26. 26.
    Steward, R.: Stream control transmission protocol. IETF RFC 4960 (2007)Google Scholar
  27. 27.
    Wischik, D., Raiciu, C., Greenhalgh, A., Handley, M.: Design, implementation and evaluation of congestion control for multipath TCP. In: Proceedings of NSDI (2011)Google Scholar
  28. 28.
    Xing, X., Mishra, S., Liu, X.: ARBOR: hang together rather than hang separately in 802.11 wifi networks. In: Proceedings of INFOCOM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tao Jin
    • 1
  • Triet D. Vo-Huu
    • 2
    Email author
  • Erik-Oliver Blass
    • 3
  • Guevara Noubir
    • 2
  1. 1.Qualcomm Corporate Research and DevelopmentSan DiegoUSA
  2. 2.Northeastern UniversityBostonUSA
  3. 3.Airbus Group InnovationsMunichGermany

Personalised recommendations