Skip to main content

A Model for the Emergence of Coded Life

  • Conference paper
  • First Online:
  • 474 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9477))

Abstract

In the conceptualization presented here, a possible scenario concerned with the emergence of coded life in nature is inferred from a model that merges computer science concepts with prebiotic chemistry. In this (“digital”) model, sets of strings composed of letters, such that each letter represents a molecular building block, are located within compartments. Some of the sets of strings (together with their reactions) form “autocatalytic sets”. Some of the strings in the autocatalytic sets play the role of catalysts of reactions and others play the role of templates for replication processes.

We find several unique sets of strings, comprised of two types of letters (\(r_i\) and \(p_j\)) representing nucleotides and amino acids (respectively), with some inherent asymmetry in their properties, that prompt the emergence of a code. By identifying such “code prompting” autocatalytic sets, our abstract model suggests novel models for artificial life, and a possible explanation for the emergence and the fixation of the genetic code in life as we know it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    LUCA is the Last Universal Common Ancestor of all currently living organisms.

  2. 2.

    This is a quote from Koonin and Novozhilov [18].

  3. 3.

    We assume a small number of different letters: there are four r letters and (for example) just four [10, 14] or just ten [22] p letters. See also [11].

  4. 4.

    As is clarified in [28], there are several non-identical definitions of the term ACS; We use here the term ACS to mean precisely what is named “RAF-ACS” in [13].

References

  1. Agmon, I.: The dimeric proto-ribosome: structural details and possible implications on the origin of life. Int. J. Mol. Sci. 10, 2921–2934 (2009)

    Article  Google Scholar 

  2. Agmon, I., Bashan, A., Yonath, A.: On ribosome conservation and evolution. Isr. J. Ecol. Evol. 52, 359–374 (2006)

    Article  Google Scholar 

  3. Agmon, I., Elias, Y., Mor, T.: On the emergence of the genetic code. On preparation

    Google Scholar 

  4. Bokov, K., Steinberg, S.V.: A hierarchical model for evolution of 23S ribosomal RNA. Nature 457, 977 (2009)

    Article  Google Scholar 

  5. Chen, I.A., Nowak, M.A.: From prelife to life: how chemical kinetics become evolutionary dynamics. Acc. Chem. Res. 45, 2088–2096 (2012)

    Article  Google Scholar 

  6. Crick, F.H.C.: The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968)

    Article  Google Scholar 

  7. Dyson, F.J.: Origins of Life. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  8. Gilbert, W.: Origin of life: the RNA world. Nature 319, 618 (1986)

    Article  Google Scholar 

  9. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., Altman, S.: The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983)

    Article  Google Scholar 

  10. van der Gulik, P., Massar, S., Gilis, D., Buhrman, H., Rooman, M.: The first peptides: the evolutionary transition between prebiotic amino acids and early proteins. J. Theor. Biol. 261, 531–539 (2009)

    Article  Google Scholar 

  11. Harada, K., Fox, S.W.: Thermal synthesis of natural amino-acids from a postulated primitive terrestrial atmosphere. Nature 201, 335–336 (1964)

    Article  Google Scholar 

  12. Hordijk, W., Hein, J., Steel, M.: Autocatalytic sets and the origin of life. Entropy 12, 1733–1742 (2010)

    Article  Google Scholar 

  13. Hordijk, W., Kauffman, S.A., Steel, M.: Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems. Int. J. Mol. Sci. 12, 3085–3101 (2011)

    Article  Google Scholar 

  14. Ikehara, K.: Possible steps to the emergence of life: the [GADV]-protein world hypothesis. Chem. Rec. 5, 107–118 (2005)

    Article  Google Scholar 

  15. Kauffman, S.: Autocatalytic sets of proteins. J. Theor. Biol. 119, 1–24 (1986)

    Article  Google Scholar 

  16. Kauffman, S.: Approaches to the origin of life on earth. Life 1, 34–48 (2011)

    Article  Google Scholar 

  17. Koonin, E.V., Martin, W.: On the origin of genomes and cells within inorganic compartments. TRENDS Genet. 21, 647–654 (2005)

    Article  Google Scholar 

  18. Koonin, E.V., Novozhilov, A.S.: Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61, 99–111 (2009)

    Article  Google Scholar 

  19. Koshland, D.E.: The seven pillars of life. Science 295, 2215–2216 (2002)

    Article  Google Scholar 

  20. Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., Cech, T.R.: Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31, 147–157 (1982)

    Article  Google Scholar 

  21. Kunin, V.: A system of two polymerases - a model for the origin of life. Orig. Life Evol. Biosph. 30, 459–466 (2000)

    Article  Google Scholar 

  22. Miller, S.L., et al.: A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953)

    Article  Google Scholar 

  23. Orgel, L.E.: Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968)

    Article  Google Scholar 

  24. Rouch, A.: Evolution of the first genetic cells and the universal genetic code: a hypothesis based on macromolecular coevolution of RNA and proteins. J. Theor. Biol. 357, 220–244 (2014)

    Article  Google Scholar 

  25. Schroedinger, E.: What is Life?: The Physical Aspect of the Living Cell. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  26. Seckbach, J.: Life in the Universe: From the Miller Experiment to the Search for Life on Other Worlds, vol. 7. Springer, Cham (2004)

    Google Scholar 

  27. Segré, D., Ben-Eli, D., Deamer, D.W., Lancet, D.: The lipid world. Orig. Life Evol. Biosph. 31, 119–145 (2001)

    Article  Google Scholar 

  28. Vasas, V., Fernando, C., Santos, M., Kauffman, S., Szathmáry, E.: Evolution before genes. Biol. Direct 7, 1–14 (2012)

    Article  Google Scholar 

  29. Woese, C.R.: On the evolution of the genetic code. Proc. Natl. Acad. Sci. USA 54, 1546 (1965)

    Article  Google Scholar 

  30. Woese, C.R.: The Genetic Code: The Molecular Basis for Genetic Expression. Harper and Row, New York (1967)

    Google Scholar 

  31. Yarus, M., Caporaso, J.G., Knight, R.: Origins of the genetic code: the escaped triplet theory. Annu. Rev. Biochem. 74, 179–198 (2005)

    Article  Google Scholar 

Download references

Acknolwledgments

TM thanks the Israeli Ministry of Defense Research and Technology Unit. We thank Yuval Elias for fruitful discussions, we thank Yuval Elias and Erez Mor for a lot of help with the Figures, and we thank Itay Fayerverker for several useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Mor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Agmon, I., Mor, T. (2015). A Model for the Emergence of Coded Life. In: Dediu, AH., Magdalena, L., Martín-Vide, C. (eds) Theory and Practice of Natural Computing. TPNC 2015. Lecture Notes in Computer Science(), vol 9477. Springer, Cham. https://doi.org/10.1007/978-3-319-26841-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26841-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26840-8

  • Online ISBN: 978-3-319-26841-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics