Skip to main content

Examining Production Efficiency in Higher Education: The Utility of Stochastic Frontier Analysis

  • Chapter
  • First Online:
Book cover Higher Education: Handbook of Theory and Research

Part of the book series: Higher Education: Handbook of Theory and Research ((HATR,volume 31))

Abstract

Production frontier analysis and the technical efficiency of production are conceptual tools that can provide insight into the production efficiency of colleges and universities. This chapter provides an overview of the theoretical and conceptual underpinnings of stochastic frontier analysis (SFA) and its application to degree production efficiency in higher education. The theoretical background, conceptual basis, statistical properties, and application of different types of SFA models that are used to generate measures of production efficiency are discussed. True fixed-effects (TFE), true random-effects (TRE), random parameter (RP), and latent class (LC) are among the SFA models introduced and discussed. Using cross-sectional and panel data and various models, this chapter demonstrates how SFA can be employed to examine bachelor’s degree productivity of master’s comprehensive universities. Differences in estimates of the technical efficiency of degree production across TFE, TRE, RP, and LC models of SFA, with different distributional assumptions of technical efficiency are discussed. The chapter also provides an example of the utility of a SFA model and how it is used to rank institutions based on their technical efficiency of degree production. It concludes with recommendations for future applications of SFA models in higher education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Greene (2003) -->also proposed a gamma-normal distribution -->, which has not been used extensively in the stochastic frontier analysis literature.

  2. 2.

    If there is a competitive higher education, then the inputs (e.g., instructional faculty and educational technology) factors are paid their marginal product.

References

  • Agasisti, T. (2011). Performances and spending efficiency in higher education: a European comparison through non-parametric approaches. Education Economics, 19(2), 199–224. doi:10.1080/09645290903094174.

    Article  Google Scholar 

  • Agasisti, T., & Johnes, G. (2007). Beyond frontiers: Comparing the efficiency of higher education decision-making units across more than one country. Education Economics, 2007(1), 1–22.

    Google Scholar 

  • Agasisti, T., & Johnes, G. (2008). Heterogeneity and the evaluation of efficiency: The case of Italian universities. Applied Economics, 2008(1), 1–11.

    Google Scholar 

  • Agasisti, T., & Johnes, G. (2009). Beyond frontiers: Comparing the efficiency of higher education decision-making units across more than one country. Education Economics, 2007(1), 1–22.

    Google Scholar 

  • Agasisti, T., & Johnes, G. (2015). Efficiency, costs, rankings and heterogeneity: The case of U.S. higher education. Studies in Higher Education, 40(1), 60–82.

    Article  Google Scholar 

  • Agasisti, T., & Pohl, C. (2012). Comparing German and Italian public universities: Convergence or divergence in the higher education landscape? Managerial and Decision Economics, 33(2), 71–85.

    Article  Google Scholar 

  • Aigner, D. J., Lovell, C. A., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6, 21–37.

    Article  Google Scholar 

  • Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht, The Netherlands: Kluwer.

    Book  Google Scholar 

  • Archibald, R. B., & Feldman, D. H. (2008). Explaining increases in higher education costs. The Journal of Higher Education, 79(3), 268–295.

    Article  Google Scholar 

  • Arrow, K. J., Chenery, H. B., Minhas, B. S., & Solow, R. M. (1961). Capital-labor substitution and economic efficiency. The Review of Economics and Statistics, 43(3), 225–250.

    Article  Google Scholar 

  • Battese, G. E., & Coelli, T. J. (1988). Prediction of firm-level technical efficiencies: With a generalized frontier production function and panel data. Journal of Econometrics, 38, 387–399.

    Article  Google Scholar 

  • Battese, G. E., & Coelli, T. J. (1992). Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. International Applications of Productivity and Efficiency Analysis, 1992, 149–165.

    Article  Google Scholar 

  • Battese, G. E., & Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics, 20(2), 325–332.

    Article  Google Scholar 

  • Becchetti, L., & Trovato, G. (2011). Corporate social responsibility and firm efficiency: A latent class stochastic frontier analysis. Journal of Productivity Analysis, 36(3), 231–246.

    Article  Google Scholar 

  • Beckers, D., & Hammond, C. (1987). A tractable likelihood function for the normal-gamma stochastic frontier model. Economics Letters, 24(1), 33–38.

    Article  Google Scholar 

  • Besstremyannaya, G. (2011). Managerial performance and cost efficiency of Japanese local public hospitals: A latent class stochastic frontier model. Health Economics, 20(1), 19–34.

    Article  Google Scholar 

  • Bishop, P., & Brand, S. (2003). The efficiency of museums: A stochastic frontier production function approach. Applied Economics, 35(17), 1853–1858.

    Article  Google Scholar 

  • Bottasso, A., & Sembenelli, A. (2004). Does ownership affect firms’ efficiency? Panel data evidence on Italy. Empirical Economics, 29(4), 769–786.

    Article  Google Scholar 

  • Bravo-Ureta, B. E., Solis, D., Moreira Lopez, V. H., Maripani, J. F., Thiam, A., & Rivas, T. (2007). Technical efficiency in farming: A meta-regression analysis. Journal of Productivity Analysis, 27(1), 57–72.

    Article  Google Scholar 

  • Bryant, F. B., & Arnold, P. R. (1995). Principal components analysis and exploratory and confirmatory factor analysis. In L. G. Grimm’s (Ed.), Reading and understanding multivariate statistics (pp. 99–136). Washington, DC: American Psychological Association.

    Google Scholar 

  • Chakraborty, K. (2009). Efficiency in public education: The role of socio-economic variables. Research in Applied Economics, 1(1), 1–18.

    Article  Google Scholar 

  • Chakraborty, K., & Poggio, J. (2008). Efficiency and equity in school funding: A case study for Kansas. International Advances in Economic Research, 14(2), 228–241.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (1995). Data envelopment analysis: Theory, methodology, and applications. New York: Springer.

    Google Scholar 

  • Chen, C.-F. (2007). Applying the stochastic frontier approach to measure hotel managerial efficiency in Taiwan. Tourism Management, 28(3), 696–702.

    Article  Google Scholar 

  • Clark, J. A., & Siems, T. (2002). X-efficiency in banking: Looking beyond the balance sheet. Journal of Money, Credit, and Banking, 34(4), 987–1013.

    Article  Google Scholar 

  • Coelli, T. J., Rao, D. S., & Battese, G. (1998). An introduction to efficiency and productivity analysis. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Coelli, T. J., Rao, D. S., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and productivity analysis (2nd ed.). New York: Springer.

    Google Scholar 

  • Cohn, E. S., Rhine, S. L. W., & Santos, M. C. (1989). Institutions of higher education as multi-product firms: Economies of scale and scope. The Review of Economics and Statistics, 71(2), 284–290.

    Article  Google Scholar 

  • Cooper, W. W., Seiford, L. M., & Tone, K. (1999). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Cornwell, C., Schmidt, P., & Sickles, R. C. (1990). Production frontiers with cross-sectional and time-series variation in efficiency levels. Journal of Econometrics, 46(2), 185–200.

    Article  Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data (Rev. Ed.). New York: Wiley-Interscience.

    Google Scholar 

  • Cullinane, K., Wang, T.-F., Song, D.-W., & Ji, P. (2006). The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis. Transportation Research Part A: Policy and Practice, 40(4), 354–374.

    Google Scholar 

  • Das, M., & Das, S. (2014). Technical efficiency of higher education institutions: A study of affiliated degree colleges of Barak Valley in Assam, India. Journal of Asian Developmental Studies, 3(1), 66–76.

    Google Scholar 

  • Deller, S. C., & Rudnicki, E. (1993). Production efficiency in elementary education: The case of Maine public schools. Economics of Education Review, 12(1), 45–57.

    Article  Google Scholar 

  • Duncombe, W., Miner, J., & Ruggiero, J. (1995). Potential cost savings from school district consolidation: A case study of New York. Economics of Education Review, 14(3), 265–284.

    Article  Google Scholar 

  • Eliason, S. R. (1993). Maximum likelihood estimation: Logic and practice. Newbury Park, CA: Sage Publications, Inc.

    Google Scholar 

  • Fare, R., & Primont, D. (1995). Multi-output production and duality: Theory and applications. Boston: Kluwer Academic Publishing.

    Book  Google Scholar 

  • Farsi, M., & Filippini, M. (2004). Regulation and measuring cost-efficiency with panel data models: Application to electricity distribution utilities. Review of Industrial Organization, 25(1), 1–19.

    Article  Google Scholar 

  • Farsi, M., Filippini, M., & Greene, W. H. (2005). Efficiency measurement in network industries: Application to the Swiss railway companies. Journal of Regulatory Economics, 28(1), 69–90.

    Article  Google Scholar 

  • Farsi, M., Filippini, M., & Greene, W. H. (2006). Application of panel data models in benchmarking analysis of the electricity distribution sector. Annals of Public and Comparative Economics, 77(3), 271–290.

    Article  Google Scholar 

  • Franta, M., & Konecny, T. (2009). Stochastic frontier analysis of the efficiency of Czech grammar schools. Czech Sociological Review, 45(6), 1265–1282.

    Google Scholar 

  • Fu, T.-T., Huang, C. J., & Tien, F. F. (2008). University cost structure in Taiwan. Contemporary Economic Policy, 26(4), 651–662.

    Article  Google Scholar 

  • Greene, W. (1990). A gamma-distributed stochastic frontier model. Journal of Econometrics, 46(2), 141–164.

    Article  Google Scholar 

  • Greene, W. (2003). Simulated likelihood estimation of the normal-gamma stochastic frontier function. Journal of Productivity Analysis, 19(2–3), 179–190.

    Article  Google Scholar 

  • Greene, W. (2005). Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. Journal of Econometrics, 126(2), 269–303.

    Article  Google Scholar 

  • Greene, W. (2008). Econometric analysis. La Jolla, CA: Granite Hill Publishers.

    Google Scholar 

  • Greene, W. (2010). A stochastic frontier model with correction for sample selection. Journal of Productivity Analysis, 34(1), 15–24.

    Article  Google Scholar 

  • Griffin, J. E., & Steel, M. F. J. (2007). Bayesian stochastic frontier analysis using WinBUGS. Journal of Productivity Analysis, 27(3), 163–176.

    Article  Google Scholar 

  • Haining, R. (2003). Spatial data analysis: Theory and practice (1st ed.). Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Heck, R., & Thomas, S. (2009). An introduction to multilevel modeling techniques (2nd ed.). New York: Routledge/Taylor and Francis.

    Google Scholar 

  • Hemmeter, J. A. (2006). Examining public library efficiency using stochastic frontier productions. Public Finance Review, 34(3), 328–348.

    Article  Google Scholar 

  • Hildreth, C., & Houck, J. P. (1968). Some estimators for a linear model with random coefficients. Journal of the American Statistical Association, 63(322), 584–595.

    Google Scholar 

  • Hofler, R. A., & Payne, J. E. (1997). Measuring efficiency in the national basketball association. Economics Letters, 55(2), 293–299.

    Article  Google Scholar 

  • Hopkins, D. S., & Massy, W. F. (1981). Planning models for colleges and universities. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Huang, H. C. (2004). Estimation of technical inefficiencies with heterogeneous technologies. Journal of Productivity Analysis, 21(3), 277–296.

    Article  Google Scholar 

  • Izadi, H., Johnes, G., Oskrochi, R., & Crouchley, R. (2002). Stochastic frontier estimation of a CES cost function: The case of higher education in Britain. Economics of Education Review, 21(1), 63–71.

    Article  Google Scholar 

  • Jacobs, R. (2001). Alternative methods to examine hospital efficiency: Data envelopment analysis and stochastic frontier analysis. Health Care Management Science, 4(2), 103–115.

    Article  Google Scholar 

  • Johnes, G., & Johnes, J. (2009). Higher education institutions’ costs and efficiency: Taking the decomposition a further step. Economics of Education Review, 28(1), 107–113. doi:10.1016/j.econedurev.2008.02.001.

    Article  Google Scholar 

  • Johnes, G., Johnes, J., & Thanassoulis, E. (2008). An analysis of costs in institutions of higher education in England. Studies of Higher Education, 33(4), 527–549.

    Article  Google Scholar 

  • Johnes, G., & Schwarzenberger, A. (2011). Differences in cost structure and the evaluation of efficiency: The case of German universities. Education Economics, 19(5), 487–499.

    Article  Google Scholar 

  • Johnes, J. (1996). Performance assessment in higher education in Britain. European Journal of Operational Research, 89(1), 18–33.

    Article  Google Scholar 

  • Johnes, J. (2008). Efficiency and productivity change in the English higher education sector from 1996/97 to 2004/05. The Manchester School, 76(6), 653–674. doi:10.1111/j.1467-9957.2008.01087.x.

    Article  Google Scholar 

  • Johnes, J. (2014). Efficiency and mergers in English higher education 1996/97 to 2008/9: Parametric and non-parametric estimation of the multi-input multi-output distance function. The Manchester School, 82(4), 465–487.

    Article  Google Scholar 

  • Jondrow, J., Lovell, C. A. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production model. Journal of Econometrics, 19(2–3), 233–238.

    Article  Google Scholar 

  • Kahane, L. H. (2005). Production efficiency and discriminatory hiring practices in the National Hockey League. Review of Industrial Organization, 27(1), 47–71.

    Article  Google Scholar 

  • Kalirajan, K. P., & Obwona, M. B. (1994). Frontier production function: The stochastic coefficients approach. Oxford Bulletin of Economics and Statistics, 56(1), 87–96.

    Article  Google Scholar 

  • Kamenetz, A. (2014, December). New college ratings will consider aid, total cost, employment. National Public Radio. http://www.npr.org/sections/ed/2014/12/19/371705270/details-on-the-administrations-new-college-ratings-system

  • Kang, B.-G., & Greene, K. V. (2002). The effects of monitoring and competition on public education outputs: A stochastic frontier approach. Public Finance Review, 30(1), 3–26.

    Article  Google Scholar 

  • Kelly, P. J. (2010). Closing the college attainment gap between the U.S. and most educated countries, and the contributions to be made by the states. Washington, DC: National Center for Higher Education Management Systems.

    Google Scholar 

  • Kumbhakar, S. C. (1990). Production frontiers, panel data, and time-variant technical efficiency. Journal of Econometrics, 46, 201–211.

    Article  Google Scholar 

  • Kumbhakar, S. C., Lien, G., & Hardaker, J. B. (2014). Technical efficiency in competing panel data models: A study of Norwegian grain farming. Journal of Productivity Analysis, 41(2), 321–337.

    Article  Google Scholar 

  • Kumbhakar, S. C., & Lovell, C. A. K. (2000). Stochastic frontier analysis. New York: Cambridge University Press.

    Book  Google Scholar 

  • Laband, D. N., & Lentz, B. F. (2003). New estimates of economies of scale and scope in higher education. Southern Economic Journal, 70(1), 172–183.

    Article  Google Scholar 

  • Lang, G. (2005). The difference between wages and wage potentials: Earnings disadvantages of immigrants in Germany. The Journal of Economic Inequality, 3(1), 21–42.

    Article  Google Scholar 

  • Last, A.-K., & Wetzel, H. (2010). The efficiency of German public theaters: A stochastic frontier analysis approach. Journal of Cultural Economics, 34(2), 89–110.

    Article  Google Scholar 

  • Lee, Y. H., & Schmidt, P. (1993). A production frontier model with flexible temporal variation in technical inefficiency. In H. Fried, C. A. K. Lovell, & S. Schmidt (Eds.), The measurement of productive efficiency: Techniques and applications. Oxford: Oxford University Press.

    Google Scholar 

  • Lenton, P. (2008). The cost structure of higher education in further education colleges in England. Economics of Education Review, 27(4), 471–482.

    Article  Google Scholar 

  • Li, T., & Rosenman, R. (2001). Cost inefficiency in Washington hospitals: A stochastic frontier approach using panel data. Health Care Management Science, 4(2), 73–81.

    Article  Google Scholar 

  • Lovell, C. A. K., Richardson, S., Travers, P., & Wood, L. L. (1994). Resources and functionings: A new view of inequality in Australia. In W. Eichorn (Ed.), Models and measurement of welfare inequality. Berlin: Springer.

    Google Scholar 

  • Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de Estaistica, 4, 209–242.

    Article  Google Scholar 

  • Martin, J. C., Roman, C., & Voltes-Dorta, A. (2009). A stochastic frontier analysis to estimate the relative efficiency of Spanish airports. Journal of Productivity Analysis, 31(3), 163–176.

    Article  Google Scholar 

  • McMillan, M. L., & Chan, W. H. (2006). University efficiency: A comparison and consolidation of results from stochastic and non-stochastic methods. Education Economics, 14(1), 1–30.

    Article  Google Scholar 

  • Meeusen, W., & van den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed errors. International Economic Review, 18, 435–444.

    Article  Google Scholar 

  • Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica, 46(1), 69–85.

    Article  Google Scholar 

  • Obeng, K. (2013). Bus transit technical efficiency using latent class stochastic indirect production frontier. Applied Economics, 45(28), 3933–3942.

    Article  Google Scholar 

  • Olivares, M., & Wetzel, H. (2014). Competing in the higher education market: Empirical evidence for economies of scale and scope in German higher education institutions. CESifo Economic Studies, 60(4), 653–680.

    Article  Google Scholar 

  • Orea, L., & Kumbhakar, S. (2004). Efficiency measurement using a latent class stochastic frontier model. Empirical Economics, 29(1), 169–183.

    Article  Google Scholar 

  • Oum, T. A., Yan, J., & Yu, C. (2008). Ownership forms matter for airport efficiency: A stochastic frontier investigation of worldwide airports. Journal of Urban Economics, 64(2), 422–435.

    Article  Google Scholar 

  • Pitt, M. M., & Lee, L.-F. (1981). The measurement and sources of technical efficiency in the Indonesian weaving industry. Journal of Development Economics, 9(1), 43–64.

    Article  Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Newbury Park, CA: Sage.

    Google Scholar 

  • Robst, J. (2000). Do state appropriations influence cost efficiency in public higher education? Applied Economics Letters, 7(11), 715–719.

    Article  Google Scholar 

  • Robst, J. (2001). Cost efficiency in public higher education institutions. The Journal of Higher Education, 72(6), 730–750.

    Article  Google Scholar 

  • Rosko, M. D. (2004). Performance of U.S. teaching hospitals: A panel analysis of cost inefficiency. Health Care Management Science, 7(1), 7–16.

    Article  Google Scholar 

  • Sav, G. T. (2012a). Frontier and envelopment evaluations of university graduation efficiencies and productivities: elements for performance-based funding. Problems and Perspectives in Management, 10(4), 71–79.

    Google Scholar 

  • Sav, G. T. (2012b). Managing operating efficiencies of publicly owned universities: American university stochastic frontier estimates using panel data. Advances in Management & Applied Economics, 2(1), 1–23.

    Google Scholar 

  • Schmidt, P., & Sickles, R. C. (1984). Production frontiers and panel data. Journal of Business and Economic Statistics, 2, 367–374.

    Google Scholar 

  • Scotti, D., Malighetti, P., Martini, G., & Volta, N. (2012). The impact of airport competition on technical efficiency: A stochastic frontier analysis applied to Italian airport. Journal of Air Transport Management, 22(1), 9–15.

    Article  Google Scholar 

  • Seiford, L. M. (1996). Data envelopment analysis: The evolution of the state of the art (1978–1995). Journal of Productivity Analysis, 7(1), 99–138.

    Article  Google Scholar 

  • Shephard, R. W. (1953). Cost and production functions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Shephard, R. W. (1970). Theory of cost and production functions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Simar, L., & Wilson, P. W. (2011). Two-stage DEA: Caveat emptor. Journal of Productivity Analysis, 36(2), 205–218.

    Article  Google Scholar 

  • Stevens, P. A. (2005). A stochastic frontier analysis of English and Welsh universities. Education Economics, 13(4), 355–374.

    Article  Google Scholar 

  • Sullivan, T. A., Mackie, C., Massy, W. F., & Sinha, E. (2012). Improving measurement of productivity in higher education. Washington, DC: National Academies Press.

    Google Scholar 

  • Thanassoulis, E. (2001). Introduction to the theory and application of data envelopment analysis: A foundation text with integrated software. New York: Springer.

    Book  Google Scholar 

  • Thanassoulis, E., Kortelainen, M., Johnes, G., & Johnes, J. (2011). Costs and efficiency in higher education institutions in England: A DEA analysis. Journal of the Operational Research Society, 62, 1282–1297.

    Article  Google Scholar 

  • Titus, M. A. (2009). Bachelor’s degree productivity and x-inefficiency: The role of state higher education policy. Journal of College Student Retention: Research, Theory and Practice, 11(1), 7–32.

    Article  Google Scholar 

  • Tsionas, E. G. (2002). Stochastic frontier models with random coefficients. Journal of Applied Econometrics, 17(2), 127–147.

    Article  Google Scholar 

  • Winston, G. C. (1999). Subsidies, hierarchy and peers: The awkward economics of higher education. The Journal of Economic Perspectives, 13(1), 13–36.

    Article  Google Scholar 

  • Worthington, A. C., & Higgs, H. (2011). Economies of scale and scope in Australian higher education. Higher Education, 61(4), 387–414.

    Article  Google Scholar 

  • Zhang, L. (2010). The use of panel data models in higher education policy studies. In J. C. Smart (Ed.), Higher education: Handbook of theory and research, 25,307–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin A. Titus .

Editor information

Editors and Affiliations

Appendices

Appendices

9.1.1 Appendix A : Stata Syntax

*create quadratic and interaction terms for the translog models.

gen lgraddeg2=lgraddeg*lgraddeg

gen lgraddeglugrad=lgraddeg*lugrad

gen lgraddeglgrad=lgraddeg*lgrad

gen lgraddeglresh=lgraddeg*lresh

gen lgraddegleandg=lgraddeg*leandg

gen lgraddeglftfac=lgraddeg*lftfac

gen lgraddeglptfac=lgraddeg*lptfac

gen lgraddeglfacsal=lgraddeg*lfacsal

gen lugrad2=lugrad*lugrad

gen lugradlgrad=lugrad*lgrad

gen lugradlresh=lugrad*lresh

gen lugradleandg=lugrad*leandg

gen lugradlftfac=lugrad*lftfac

gen lugradlptfac=lugrad*lptfac

gen lugradlfacsal=lugrad*lfacsal

gen lgrad2=lgrad*lgrad

gen lgradlresh=lgrad*lresh

gen lgradleandg=lgrad*leandg

gen lgradlftfac=lgrad*lftfac

gen lgradlptfac=lgrad*lptfac

gen lgradlfacsal=lgrad*lfacsal

gen lresh2=lresh*lresh

gen lreshleandg=lresh*leandg

gen lreshlftfac=lresh*lftfac

gen lreshlptfac=lresh*lptfac

gen lreshlfacsal=lresh*lfacsal

gen leandg2=leandg*leandg

gen leandglftfac=leandg*lftfac

gen leandglptfac=leandg*lptfac

gen leandglfacsal=leandg*lfacsal

gen lftfac2=lftfac*lftfac

gen lftfaclptfac=lftfac*lptfac

gen lftfaclfacsal=lftfac*lfacsal

gen lptfac2=lptfac*lptfac

gen lptfaclfacsal=lptfac*lfacsal

gen lfacsal2=lfacsal*lfacsal

*stochastic frontier analysis of cross-sectional data with different error distributions (Cobb-Douglas functional form); use “predict” command to generate efficiency score.

*exponential error distribution assumption

sfcross lbach lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control, dist(e)

predict cdcrosse, jlms

*half-normal error distribution assumption.

sfcross lbach lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control, dist(h)

predict cdcrossh, jlms

*truncated-normal error distribution assumption.

sfcross lbach lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control, dist(t)

predict cdcrosst, jlms

*Translog functional form for cross-sectional data

*create translog variable list.

global xvar “lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control lgraddeg2 lgraddeglugrad lgraddeglgrad lgraddeglresh lgraddegleandg lgraddeglftfac lgraddeglptfac lgraddeglfacsal lugrad2 lugradlgrad lugradlresh lugradleandg lugradlftfac lugradlptfac lugradlfacsal lgrad2 lgradlresh lgradleandg lgradlftfac lgradlptfac lgradlfacsal lresh2 lreshleandg lreshlftfac lreshlptfac lreshlfacsal leandg2 leandglftfac leandglptfac leandglfacsal lftfac2 lftfaclptfac lftfaclfacsal lptfac2 lptfaclfacsal lfacsal2”

*exponential error distribution assumption.

sfcross lbach $xvar, dist(e)

predict tcrosse, jlms

*half-normal error distribution assumption.

sfcross lbach $xvar, dist(h)

predict tcrossh, jlms

*truncated-normal error distribution assumption.

sfcross lbach $xvar, dist(t)

predict tcrosst, jlms

*get descriptive statistics for efficiency scores from SFA for cross-sectional data.

summarize cdcrosse cdcrossh cdcrosst tcrosse tcrossh tcrosst

correlate cdcrosse cdcrossh cdcrosst tcrosse tcrossh tcrosst

*set panel.

xtset unitid academicyear, yearly

*Cobb-Douglas true fixed effects with different error distributional assumptions.

*exponential error distribution assumption.

sfpanel lbach lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control, model (tfe) distribution(e) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict panelcrosstfee, jlms

*half-normal error distribution assumption.

sfpanel lbach lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control, model (tfe) distribution(h) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict panelcrosstfeh, jlms

*truncated normal error distribution assumption.

sfpanel lbach lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control, model (tfe) distribution(t) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict panelcrosstfet, jlms

*Translog true fixed effects with different error distributional assumptions

*exponential error distribution assumption.

sfpanel lbach $xvar, model(tfe) distribution(e) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict paneltranstfee, jlms

*half-normal error distribution assumption.

sfpanel lbach $xvar, model(tfe) distribution(h) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict paneltranstfeh, jlms

*truncated-normal error distribution assumption.

sfpanel lbach $xvar, model(tfe) distribution(t) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict paneltranstfet, jlms

*get descriptive statistics for efficiency scores generated from true fixed effects models.

summarize panelcrosstfee panelcrosstfeh panelcrosstfet paneltranstfee paneltranstfeh paneltranstfet

correlate panelcrosstfee panelcrosstfeh panelcrosstfet paneltranstfee paneltranstfeh paneltranstfet

*Cobb-Doulgas functional form for true random effects models.

*exponential error distribution assumption.

sfpanel lbach lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control, model(tre) distribution(e) difficult nsim(250) simtype(genhalton) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict panelcdtree, jlms

*half-normal error distribution assumption.

sfpanel lbach lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control, model(tre) distribution(h) difficult nsim(250) simtype(genhalton) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict panelcdtreh, jlms

*truncated-normal error distribution assumption.

sfpanel lbach lgraddeg lugrad lgrad lresh leandg lftfac lptfac lfacsal hbcu hsi control, model(tre) distribution(t) difficult nsim(250) simtype(genhalton) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict panelcdtret, jlms

*Translog functional form for true random effects models.

*exponential error distribution assumption.

sfpanel lbach $xvar, model(tre) distribution(e) difficult nsim(250) simtype(genhalton) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict paneltranstree, jlms

*half-normal error distribution assumption.

sfpanel lbach $xvar, model(tre) distribution(h) difficult nsim(250) simtype(genhalton) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict paneltranstreh, jlms

*truncated-normal error distribution assumption.

sfpanel lbach $xvar, model(tre) distribution(t) difficult nsim(250) simtype(genhalton) iterate(2000) diff rescale restart(5) tech(nr 100 bfgs 100 bhhh 100 dfp 100)

predict paneltranstret, jlms

*Get descriptive statistics for efficiency scores for the true random effects models.

summarize panelcdtree panelcdtreh panelcdtret paneltranstree paneltranstreh paneltranstret

correlate panelcdtree panelcdtreh panelcdtret paneltranstree paneltranstreh paneltranstret

9.1.2 Appendix B: Limdep Syntax

*set panel.

SETPANEL; Group = unitid; Pds = grpti $

*run frontier model with to get start values for RPM Cobb-Douglass model.

FRONTIER;Lhs=lbach

 ;Rhs=one,lgraddeg, lugrad, lgrad, lresh, leandg, lftfac, lptfac, lfacsal, hbcu, hsi, control

 ;MODEL=E$

*run RPM Cobb-Douglas model (exponential).

FRONTIER;Lhs=lbach

 ;Rhs=one,lgraddeg, lugrad, lgrad, lresh, leandg, lftfac, lptfac, lfacsal, hbcu, hsi, control

 ;Heteroscadasticity

 ;Means

 ;RPM

 ;Maxit=1000

 ;Halton;Pts=250

 ;Str=GRPTI

 ;Eff=RPMCDE

 ;Fcn=one(n),lgraddeg(n), lugrad(n), lgrad(n), lresh(n), leandg(n), lftfac(n), lptfac(n), lfacsal(n), HBCU(n), HSI(n), control(n)

 ;Model = E

 ;Panel$

FRONTIER;Lhs=lbach

 ;Rhs=one,lgraddeg, lugrad, lgrad, lresh, leandg, lftfac, lptfac, lfacsal, hbcu, hsi, control

 ;MODEL=H$

*run RPM Cobb-Douglas model (half-normal).

FRONTIER;Lhs=lbach

 ;Rhs=one, lgraddeg, lugrad, lgrad, lresh, leandg, lftfac, lptfac, lfacsal, hbcu, hsi, control

 ;Heteroscadasticity

 ;Means

 ;RPM

 ;Maxit=1000

 ;Halton;Pts=250

 ;Str=GRPTI

 ;Eff=RPMCDH

 ;Fcn=one(n),lgraddeg(n), lugrad(n), lgrad(n), lresh(n), leandg(n), lftfac(n), lptfac(n), lfacsal(n), HBCU(n), HSI(n), control(n)

 ;Model = H

 ;Panel$

FRONTIER;Lhs=lbach

 ;Rhs=one,lgraddeg, lugrad, lgrad, lresh, leandg, lftfac, lptfac, lfacsal, hbcu, hsi, control

 ;MODEL=T$

*run RPM Cobb-Douglas model (truncated normal).

FRONTIER;Lhs=lbach

 ;Rhs=one,lgraddeg, lugrad, lgrad, lresh, leandg, lftfac, lptfac, lfacsal, hbcu, hsi, control

 ;Heteroscadasticity

 ;Means

 ;RPM

 ;Maxit=1000

 ;Halton;Pts=250

 ;Str=GRPTI

 ;Eff=RPMCDT

 ;Fcn=one(n),lgraddeg(n), lugrad(n), lgrad(n), lresh(n), leandg(n), lftfac(n), lptfac(n), lfacsal(n), HBCU(n), HSI(n), control(n)

 ;Model = T

 ;Panel$

*Run translog stochastic frontier model to get start values (exponential).

FRONTIER;Lhs=lbach

 ;Rhs= one, lgraddeg, lugrad, lgrad, lresh, leandg, lftfac, lptfac, lfacsal, hbcu, his, control, lgraddeg2, lgraddeglugrad, lgraddeglgrad, lgraddeglresh, lgraddegleandg, lgraddeglftfac, lgraddeglptfac, lgraddeglfacsal, lugrad2, lugradlgrad, lugradlresh, lugradleandg, lugradlftfac, lugradlptfac, lugradlfacsal, lgrad2, lgradlresh, lgradleandg, lgradlftfac, lgradlptfac, lgradlfacsal, lresh2, lreshleandg, lreshlftfac, lreshlptfac, lreshlfacsal, leandg2, leandglftfac, leandglptfac, leandglfacsal, lftfac2, lftfaclptfac, lftfaclfacsal, lptfac2, lptfaclfacsal, lfacsal2

 ;MODEL=E$

*Run translog RPM (exponential).

FRONTIER;Lhs=lbach

 ;Rhs=one, lgraddeg, lugrad, lgrad, lresh, leandg, lftfac, lptfac, lfacsal, hbcu, his, control, lgraddeg2, lgraddeglugrad, lgraddeglgrad, lgraddeglresh, lgraddegleandg, lgraddeglftfac, lgraddeglptfac, lgraddeglfacsal, lugrad2, lugradlgrad, lugradlresh, lugradleandg, lugradlftfac, lugradlptfac, lugradlfacsal, lgrad2, lgradlresh, lgradleandg, lgradlftfac, lgradlptfac, lgradlfacsal, lresh2, lreshleandg, lreshlftfac, lreshlptfac, lreshlfacsal, leandg2, leandglftfac, leandglptfac, leandglfacsal, lftfac2, lftfaclptfac, lftfaclfacsal, lptfac2, lptfaclfacsal, lfacsal2

 ;Heteroscadasticity

 ;Means

 ;RPM

 ;Maxit=1000

 ;Halton;Pts=250

 ;Str=GRPTI

 ;Eff=RPMTE

 ;Fcn= one(n), lgraddeg(n), lugrad(n), lgrad(n), lresh(n), leandg(n), lftfac(n), lptfac(n), lfacsal(n), hbcu(n), hsi(n), control(n), lgraddeg2(n), lgraddeglugrad(n), lgraddeglgrad(n), lgraddeglresh(n), lgraddegleandg(n), lgraddeglftfac(n), lgraddeglptfac(n), lgraddeglfacsal(n), lugrad2(n), lugradlgrad(n), lugradlresh(n), lugradleandg(n), lugradlftfac(n), lugradlptfac(n), lugradlfacsal(n), lgrad2(n), lgradlresh(n), lgradleandg(n), lgradlftfac(n), lgradlptfac(n), lgradlfacsal(n), lresh2(n), lreshleandg(n), lreshlftfac(n), lreshlptfac(n), lreshlfacsal(n), leandg2(n), leandglftfac(n), leandglptfac(n), leandglfacsal(n), lftfac2(n), lftfaclptfac(n), lftfaclfacsal(n), lptfac2(n), lptfaclfacsal(n), lfacsal2(n)

 ;Model = E

 ;Panel$

***LATENT CLASS MODEL.

*set panel.

SETPANEL; Group = unitid; Pds = grpti $

*get initial point estimates using regression.

REGRESS;Lhs = lbach

 ;Rhs = one, lgraDdeg, lugrad, lgrad, lresh, LEANDG, lftfac, lptfac, lfacsal, HBCU, HSI

 ;Str=unitid

 ;Margin

 ;Panel$

*run frontier model to generate start values from LCM.

FRONTIER;Lhs=lbach

 ;Rhs=one,lgraddeg, lugrad, lgrad, LRESH, leandg, LFTFAC, LPTFAC, LFACSAL, HBCU, HSI, CONTROL

 ;Panel$

*run latent class model.

FRONTIER;Lhs=lbach

 ;Rhs=one,lgraddeg, lugrad, lgrad, LRESH, leandg, LFTFAC, LPTFAC, LFACSAL, HBCU, HSI, CONTROL

 ;LCM

 ;MAXIT=1000

 ;Pds=8

 ;Pts=2

 ;Eff = efflccd

 ;Panel$

*compute efficiency term using the inefficiency (u) term.

CREATE; TECHEFFL=EXP(−EFFLCCD)$

*show descriptive statistics for the efficiency score.

KERNEL; LHS=;RHS=TECHEFFL$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Titus, M.A., Eagan, K. (2016). Examining Production Efficiency in Higher Education: The Utility of Stochastic Frontier Analysis. In: Paulsen, M. (eds) Higher Education: Handbook of Theory and Research. Higher Education: Handbook of Theory and Research, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-26829-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26829-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26828-6

  • Online ISBN: 978-3-319-26829-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics