Skip to main content

Part of the book series: Progress in Drug Research ((PDR,volume 71))

Abstract

Experimental tumours have great importance for the purposes of modelling where Dalton’s ascites lymphoma (DAL) and Ehrlich ascites carcinoma (EAC) are the commonest. It appeared firstly as a spontaneous breast cancer in a female mouse and then Ehrlich and Apolant (Berlin KlinWshr 28:871–874, 1905) used it as an experimental tumour by transplanting tumour tissues subcutaneously from mouse to mouse. In 1932, Loewenthal and Jahn obtained the liquid form in the peritoneum of the mouse and named it as ‘Ehrlich ascites carcinoma’ due to the ascites liquid, together with the carcinoma cells. In this chapter, two most common tumour cells (EAC and DAL) are chosen and protocol has been framed to determine the antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ehrlich, P., & Apolant, H. (1905). Beobachtungen Uber MaligneMausentumoren. Berlin KlinWshr, 28, 871–874.

    Google Scholar 

  • George, B.P., Parimelazhagan, T., Sajeesh, T., & Saravan, S. (2014). Antitumor and wound healing properties of Rubus niveus Thunb. root. Journal of Environmental Pathology and Oncology, 33(2), 145–158.

    Google Scholar 

  • Kaleoglu, O., & Isli, N. (1977). Ehrlich-LettreAsitTumoru. Tip FakultesiMecmuasi, 40, 978–984.

    Google Scholar 

  • Kuttan, R., Bhanumathy, P., Nirmala, K., & George, M. C. (1985). Possible anticancer activity of turmeric. Cancer Letters, 29, 197–202.

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar, N. V., Joy, K. L., Kuttan, G., Ramsewak, R. S., Nair, M. G., & Kuttan, R. (2002). Antitumour and anticarcinogenic activity of Phyllanthusamarus extract. Journal of Ethnopharmacology, 81, 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Song, Z., Varani, J., & Goldstein, I. J. (1993). Differences in cell surface carbohydrates and in laminin and fibronectin synthesis between adherent and non-adherent ehrlich ascites tumor cells. International Journal of Cancer, 55, 1029–1035.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimelazhagan Thangaraj .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thangaraj, P. (2016). Anti-tumour Activity. In: Pharmacological Assays of Plant-Based Natural Products. Progress in Drug Research, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-26811-8_28

Download citation

Publish with us

Policies and ethics