Skip to main content

Role of Plant Growth-Promoting Rhizobacteria (PGPR) as BioFertilizers in Stabilizing Agricultural Ecosystems

  • Chapter
  • First Online:
Book cover Organic Farming for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 9))

Abstract

Non-judicious and over applications of different toxic, synthetic chemical fertilizers lead to several environmental hazards, causing damages to human, animal, and ecosystem health and can even result in unfavorable economic turnaround. Residual chemical fertilizers in aquatic and/or rhizosphere zones could potentially disrupt the natural ecosystem balance severely hampering both agricultural productivity and initiate several critical health issues. To avoid such environmental, agricultural, and health crises, serious attention has now been shifted toward the production of environmentally friendly biofertilizers with higher economic returns and better financial gains in comparison with conventional synthetic chemical fertilizers. Under intensive agricultural practices, application of biofertilizers is of particular importance in increasing soil fertility and ensures right movement toward sustainable agriculture. To improve the agricultural productivity and yield stability, utilization of conducive terricolous microorganisms such as rhizobacteria, as biofertilizers, has been found to be of quite important under in case of modern agricultural management. The present review was aimed to elucidate firstly the main conceptions of rhizosphere and rhizobacteria, and secondly the direct/indirect functions of rhizobacteria-mediated plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA :

Abscisic acid

ACC :

1-aminocyclopropane-1-carboxylate

AM :

Arbuscular mycorrhiza

CK :

Cytokinins

ET :

Ethylene

GAs :

Gibberellins

GB :

Glycine betaine

HCN :

Hydrogen cyanide

IAA :

Indole-3-acetic acid

MHB :

Mycorrhization helper bacteria

MOA :

Mechanism of action

PC :

Pseudomonas chlororaphis

PEG :

Polyethylene glycol

PF :

Pseudomonas fluorescens

PGPR :

Plant growth-promoting rhizobacteria

ePGPR :

Extracellular PGPR

iPGPR :

Intracellular PGPR

PGRs :

Plant growth regulators

PH :

Plant hormones (phytohormones)

PSR :

Plant systemic resistant

References

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOAB J 3(3):39–46

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2011a) Response of Greengram [Vigna radiata (L.) Wilczek] grown in herbicide-amended soil to inoculation with Bradyrhizobium sp. (vigna) MRM6. J Agric Sci Technol 13(6):1209–1222

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2011b) Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (vigna) improves the growth and yield of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. Symbiosis 54:17–27. doi:10.1007/s13199-011-0122-6

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012a) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emirates J Food Agric 24(4):334–343

    Google Scholar 

  • Ahemad M, Khan MS (2012b) Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol Plant 34:245–254. doi:10.1007/s11738-011-0823-8

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012c) Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann Microbiol 62(4):1531–1540. doi:10.1007/s13213-011-0407-2

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20. doi:10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  • Ahemad M, Khan MS, Zaidi A, Wani PA (2009) Remediation of herbicides contaminated soil using microbes. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes in sustainable agriculture. Nova Science Publishers, New York

    Google Scholar 

  • Ahmad F, Ahmad I, Aqil F et al (2008) Diversity and potential on nonsymbiotic diazotrophic bacteria in promoting plant growth. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527621989.ch5

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Antouni H, Beauchamp CJ, Goussard N et al (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67. doi:10.1023/A:1004326910584

    Article  Google Scholar 

  • Arshad M, Frankenberger WTJ (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:145–151. doi:10.1016/S0065-2113(08)60567-2

    Google Scholar 

  • Bacilio M, Rodriguez H, Moreno M et al (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40(3):188–193. doi:10.1007/s00374-004-0757-z

    Article  CAS  Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK (2006) Plant-growth promoting rhizobacteria as biofertilizers and biopesticides. In: Rai MK (ed) Handbook of microbial biofertilizers. Food products. Academic Press, New York, pp 137–181

    Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aquilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Barber SA (1985) Potassium availability at the soil-root interface and factors influencing potassium uptake. In: Munson RD (ed) potassium in agriculture American Society of Agronomy-CSSA-SSSA, Madison, USA, pp 309‒324. doi:10.2134/1985.potassium.c11

    Google Scholar 

  • Bashan Y (1991) Changes in membrane potential of intact soybean root elongation zone cells induced by Azospirillum brasilense. Can J Microbiol 37(12):958–963. doi:10.1139/m91-165

    Article  Google Scholar 

  • Belimov AA, Safronova VI, Mimura T (2002) Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can J Microbiol 48(3):189–199

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microb Biotechnol 28(4):1327–1350. doi:10.1007/s11274-011-0979-9

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64(5):1644–1650. doi:10.2136/sssaj2000.6451644x

    Article  CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bio augmentation with siderophore producing bacteria. Chemosphere 74:280–286. doi:10.1016/j.chemosphere.2008.09.013

    Article  PubMed  Google Scholar 

  • Burdman S, Volpin H, Kigel J et al (1996) Promotion of nod gen inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62(8):3030–3033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler D, Davidson G, Grant WP et al (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19(5):275–283. doi:10.1016/j.tifs.2007.12.009

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TF, Bleomberg GV, Mulders IH et al (2000) Root colonization by phenazin-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13(12):1340–1345

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum-inoculated wheat seedling under osmotic stress. Can J Bot 76(2):238–244

    Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Bot 82:273–281. doi:10.1139/B03-119

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. doi:10.1023/A:1020809400075

    Article  CAS  Google Scholar 

  • Dessaux Y, Hinsinger P, Lemanceau P (2009) Rhizosphere: so many achievements and even more challenges. Plant Soil 321(1–2):1–3. doi:10.1007/s11104-009-0063-5

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer-Verlag, Berlin, Heidelberg, pp 21–42

    Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59. doi:10.1007/s11104-008-9833-8

    Article  CAS  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C et al (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45(3):209–217. doi:10.1016/j.apsoil.2010.04.007

    Article  Google Scholar 

  • Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127(4):1493–1499. doi:10.1104/pp.010783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica vol 2012 (Article ID 963401):1‒15. doi:10.6064/2012/963401

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68. doi:10.1006/jtbi.1997.0532

    Article  CAS  PubMed  Google Scholar 

  • Hartman A (1989) Ecophysiological aspects of growth and nitrogen fixation in Azospirillum Spp. Plan Soil 110(2):225–238. doi:10.1007/BF02226803

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598. doi:10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Jahanian A, Chaichi MR, Rezaei K et al (2012) The effect of plant growth promoting rhizobacteria (pgpr) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4:923–929

    Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4(3):179–183. doi:10.1007/s11816-010-0136-1

    Article  Google Scholar 

  • KeÇpczyński J, KeÇpczyńska E (1997) Ethylene in seed dormancy and germination. Physiol Plant 101:720–726. doi:10.1111/j.1399-3054.1997.tb01056.x

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2, Station de Pathologie Végétale et de Phytobactériologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marschner H, Römheld V, Horst WJ, Martin P (1986) Root-induced changes in the rhizosphere: importance for the mineral nutrition of plants. J Plant Nutr Soil Sci 149(4):441–456. doi:10.1002/jpln.19861490408

    CAS  Google Scholar 

  • Martínez-Toledo MV, Rodelas B, Salmeron V et al (1996) Production of pantothenic acid and thiamine by Azotobacter vinelandi in a chemically defined medium and a dialysed soil medium. Biol Fertil Soils 22(2):131–135. doi:10.1007/BF00384444

    Article  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE et al (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Mattoo AK, Suttle CS (1991) The plant hormone ethylene. CRC Press, Boca Raton, p 337

    Google Scholar 

  • Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology 75(2):226–230. doi:10.1134/S0026261706020184

    Article  CAS  Google Scholar 

  • Milagres AM, Machuca A, Napoleão D (1999) Detection of siderophor production from several fungi and bacteria by a modification of chrome azurol S (CAS). agar plate assay. J Microbial Meth 37(1):1–6. doi:10.1016/S0167-7012(99)00028-7

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D et al (2000) Soil organic matter mobilization by root exudates. Chemosphere 41(5):653–658

    Article  CAS  PubMed  Google Scholar 

  • Ozturk A, Caglar O, Sahin F (2003) Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J Plant Nutr Soil Sci 166(2):262–266. doi:10.1002/jpln.200390038

    Article  CAS  Google Scholar 

  • Quispel A (1991) A critical evaluation of the prospects for nitrogen fixation with non-legumes. Plan Soil 137(1):1–11. doi:10.1007/BF02187425

    Article  Google Scholar 

  • Rai SN, Gaur AC (1988) Characterization of Azotobacter SPP. and effect of Azotobacter and Azospirillum as inoculant on the yield and N-Uptake of wheat crop. Plant Soil 109(1):131–134. doi:10.1007/BF02197592

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149. doi:10.1016/j.tibtech.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C et al (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 89(3):486–493. doi:10.1007/s00726-004-0153-x

    Article  CAS  PubMed  Google Scholar 

  • Rigamonte TA, Pylro VS, Duarte GF (2010) The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations. Braz J Microbiol 41(4):832–840

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodelas B, González-López J, Martínez-Toledo MV et al (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol Fertil Soils 29(2):165–169. doi:10.1007/s003740050540

    Article  CAS  Google Scholar 

  • Russo A, Vettori L, Felici C et al (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr. S 2/5 plants. J Biotechnol 134(3–4):312–319. doi:10.1016/j.jbiotec.2008.01.020

    Article  CAS  PubMed  Google Scholar 

  • Saatovich SZ (2006) Azospirilli of Uzbekistan soil and their influence on growth and development of wheat plants. Plant Soil 283(1–2):137–145. doi:10.1007/s11104-005-5690-x

    Article  CAS  Google Scholar 

  • Şahin F, Çakmakçi R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265(1–2):123–129. doi:10.1007/s11104-005-0334-8

    Google Scholar 

  • Salcedo LDP, Prieto C, Correa MF (2014) Screening phosphate solubilizing actinobacteria isolated from the rhizosphere of wild plants from the Eastern Cordillera of the Colombian Andes. Afr J Microbiol Res 8(8):734–742. doi:10.5897/AJMR2013.5940

    Article  Google Scholar 

  • Sarige S, Blum A, Okon Y (1988) Improvement of the water status and yield of field grown grain sorghum by inoculation with Azospirillum brasilense. J Agric Sci 110:271–277. doi:10.1017/S0021859600081296

    Article  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA et al (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38(9):2971–2975. doi:10.1016/j.soilbio.2006.03.024

    Article  CAS  Google Scholar 

  • Subba Rao NS (1988) Biofertilizers in agriculture. Oxford and IBH publishers, New Delhi

    Google Scholar 

  • Subba Rao NS, Tilak KVBR, Singh CS (1985) Synergistic effect of vesicular-arbuscular mycorrhiza and Azospirillum brasilense on the growth of barley in pots. Soil Biol Biochem 17(1):119–121. doi:10.1016/0038-0717(85)90101-4

    Article  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58. doi:10.1080/17429140903125848

    Article  CAS  Google Scholar 

  • Tilak KVBR, Singh CS, Roy VK, Rao NSS (1982) Azospirillum brasilense and Azotobacter chroococcum inoculum: effect on yield of maize (Zea mays L.) and sorghum (Sorghum bicolor). Soil Biol Biochem 14(4):417–418. doi:10.1016/0038-0717(82)90016-5

    Article  Google Scholar 

  • Trinick MJ, Hadobas PA (1995) Formation of nodular structures on the non-legumes Brassica napus, B. campestris, B. juncea and Arabidopsis thaliana with Bradyrhizobium and Rhizobium isolated from Parasponia spp. or legumes grown in tropical soils. Plant Soil 172(2):207–219. doi:10.1007/BF00011323

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586. doi:10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51. doi:10.1104/pp.102.019661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48(11):3262–3267. doi:10.1016/j.fct.2010.08.035

    Article  CAS  PubMed  Google Scholar 

  • Wani SP, Chandrapalaih S, Zambre MA, Lee KK (1988) Association between N2-fixing bacteria and pearl millet plants: responses, mechanisms and persistence. Plant Soil 110(2):289–302. doi:10.1007/BF02226810

    Article  Google Scholar 

  • Wu SC, Cao ZH, Li ZG et al (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125(1–2):155–166. doi:10.1016/j.geoderma.2004.07.003

    Article  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56(3):263–284. doi:10.1556/AMicr.56.2009.3.6

    Article  CAS  PubMed  Google Scholar 

  • Zandi P, Basu SK, Bazrkar Khatibani L et al (2014) Fenugreek (Trigonella foenum-graecum L.) seed: a review of physiological and biochemical properties and their genetic improvement. Acta Physiol Plant 37:1714. doi:10.1007/s11738-014-1714-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiman Zandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zandi, P., Basu, S.K. (2016). Role of Plant Growth-Promoting Rhizobacteria (PGPR) as BioFertilizers in Stabilizing Agricultural Ecosystems. In: Nandwani, D. (eds) Organic Farming for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-26803-3_3

Download citation

Publish with us

Policies and ethics