Skip to main content

Physics: Low-Energy Brachytherapy Physics

  • Chapter
  • First Online:
Brachytherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1327 Accesses

Abstract

Low-energy brachytherapy has been a standard for more than one century of clinical cancer application. We present the isotopes used, the characteristics of these elements, and the physics of use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Z, Das RK, DeWard AL et al (2007) Dosimetric prerequisites for routine clinical use of proton emitting brachytherapy sources with average energy higher than 50 kev. Med Phys 34(1):37–40

    Article  PubMed  Google Scholar 

  2. Butler WM, Bice WS, DeWerd LA et al (2008) Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM Low Energy Brachytherapy Source Calibration Working Group. Med Phys 35(9):3860–3865

    Article  PubMed  Google Scholar 

  3. Nath R, Bice WS, Butler WM et al (2009) AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer: report of Task Group 137. Med Phys 36(11):5310–5322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiu-Tsao ST, Astrahan MA, Finger PT (2012) Dosimetry of (125)I and (103)Pd COMS eye plaques for intraocular tumors: report of Task Group 129 by the AAPM and ABS. Med Phys 39(10):6161–6184

    Article  CAS  PubMed  Google Scholar 

  5. Blasko JC, Grimm PD, Ragde H (1993) Brachytherapy and organ preservation in the management of carcinoma of the prostate. Semin Radiat Oncol 3:230–239

    Article  Google Scholar 

  6. Holm HH, Juul N, Pedersen H et al (1983) Transperineal 125Iodine seed implantation in prostate cancer guided by transrectal ultrasonography. J Urol 130:283–286

    CAS  PubMed  Google Scholar 

  7. Smith RP, Schuchert M, Komanduri K et al (2007) Dosimetric evaluation of radiation exposure during I-125 vicryl mesh implants: implications for ACOSOG z4032. Ann Surg Oncol 14(12):3610–3613

    Article  PubMed  Google Scholar 

  8. Lemoigne Y, Caner A (eds) (2009) Radiotherapy and brachytherapy. Springer, Dordrecht

    Google Scholar 

  9. Venselaar J, Baltas D, Meigooni AS et al (eds) (2012) Comprehensive brachytherapy: physical and clinical aspects. CRC Press, Boca Raton, FL

    Google Scholar 

  10. Sina S, Faghihi R, Meigooni AS et al (2011) Impact of the vaginal applicator and dummy pellets on the dosimetry parameters of Cs-137 brachytherapy source. J Appl Clin Med Phys 12:3480

    PubMed  Google Scholar 

  11. Williamson JF, Brenner DJ (2008) Physics and biology of brachytherapy. In: Halperin CE, Perez CA, Brady LW (eds) Perez and Brady’s principles and practice of radiation oncology. Lippincott Williams & Wilkins, Philadelphia, pp 423–475

    Google Scholar 

  12. TG144.http://www.aapm.org/pubs/reports/RPT_144.pdf

  13. Loftus TP (1984) Exposure standardization of 125I seeds used for brachytherapy. J Res Nat Bur Stand 89:295–303

    Article  CAS  Google Scholar 

  14. Kubo H (1985) Exposure contribution from Ti K x rays produced in the titanium capsule of the clinical 125I seed. Med Phys 12:215–220

    Article  CAS  PubMed  Google Scholar 

  15. Seltzer S, Lamperti P, Loevinger R et al (1998) New NIST Air-kerma strength standards for I-125 and Pd-103 brachytherapy seeds. Med Phys 25:A170

    Google Scholar 

  16. Williamson J (1988) Monte Carlo evaluation of specific dose constants in water for 125I seeds. Med Phys 15:686–694

    Article  CAS  PubMed  Google Scholar 

  17. Kubo HD, Coursey BM, Hanson WF et al (1998) Report of the ad hoc committee of the AAPM radiation therapy committee on 125I sealed source dosimetry. Int J Radiat Oncol Biol Phys 40(3):697–702

    Article  CAS  PubMed  Google Scholar 

  18. Williamson JF, Butler W, DeWerd LA et al (2005) Recommendations of the American Association of Physicists in Medicine regarding the impact of implementiong the 2004 Task Group 43 report on Dose Specification for Pd-103 and I-125 interstitial brachytherapy. Med Phys 32:1424–1439

    Article  CAS  PubMed  Google Scholar 

  19. Willliamson JF, Coursey BM, DeWerd LA et al (1999) Guidance to users of Nycomed Amersham and North American Scientific, Inc., I-125 interstitial sources: dosimetry and calibration changes: recommendations of the AAPM RTC ad hoc committee on low-energy seed dosimetry. Med Phys 26(4):570–573

    Article  Google Scholar 

  20. Nath R, Anderson LL, Luxton G et al (1995) Dosimetry of interstitial brachytherapy sources: report of the AAPM Radiation Therapy Committee Task Group 43. Med Phys 22(2):209–234

    Article  CAS  PubMed  Google Scholar 

  21. Rivard MJ, Coursey BM, DeWerd LA et al (2004) Update of AAPM Task Group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674

    Article  PubMed  Google Scholar 

  22. Daskalov GM, Kirov AS, Williamson JF (1998) Analytical approach to heterogeneity correction factor calculation for brachytherapy. Med Phys 25(5):722–735

    Article  CAS  PubMed  Google Scholar 

  23. Chen Z, Bongiorni P, Nath R (2010) Impact of source-production revision on the dose-rate constant of 131Cs interstitial brachytherapy source. Med Phys 37(7):3607–3610

    Article  CAS  PubMed  Google Scholar 

  24. Frank SJ, Tailor RC, Kudchadker R et al (2011) Anisotropy characterization of I-125 seed with attached encapsulated cobalt chloride complex contrast agent markers for MRI-based prostate brachytherapy. Med Dosim 36(2):200–205

    Article  PubMed  Google Scholar 

  25. Gautam B, Parsai EI, Shvydk D et al (2012) Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors. Med Phys 39(4):1980–1989

    Article  PubMed  Google Scholar 

  26. Rivard MJ, Reed JL, DeWerd LA (2014) 103Pd strings: Monte Carlo assessment of a new approach to brachytherapy source design. Med Phys 41(1):011716

    Article  PubMed  Google Scholar 

  27. Rivard JM, Butler WM, DeWerd LA et al (2007) Supplement to the 2004 update of the AAPM Task Group No. 43 Report. Med Phys 34(6):2187–2205

    Article  PubMed  Google Scholar 

  28. Eckerman MB (2013) Relative biological effectiveness of low-energy electrons and photons, letter report. U.S. Environmental Protection Agency October

    Google Scholar 

  29. Ling CC, Li WX, Anderson LL (1995) The relative biological effectiveness of I-125 and Pd-103. Int J Radiat Oncol Biol Phys 32:373–378

    Article  CAS  PubMed  Google Scholar 

  30. Scalliet P, Wambersie A (1988) Which RBE for iodine 125 in clinical applications? Radiother Oncol 9:221–230

    Article  Google Scholar 

  31. Wuu CS, Zaider M (1998) A calculation of the relative biological effectiveness of 125I and 103Pd brachytherapy sources using the concept of proximity function. Med Phys 25:2186–2189

    Article  CAS  PubMed  Google Scholar 

  32. Wuu CS, Kliauga P, Zaider M et al (1996) Microdosimetric evaluation of relative biological effectiveness for palladium-103, iodine-125, americium 241 and iridium 192 brachytherapy sources. Int J Radiat Oncol Biol Phys 36:689–697

    Article  CAS  PubMed  Google Scholar 

  33. Dale RG (1985) The application of the linear quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 58:515–528

    Article  CAS  PubMed  Google Scholar 

  34. Gagne NL (2012) Radiobiology for eye plaque brachytherapy and evaluation of implant duration and radionuclide choice using an objective function. Med Phys 39:3332–3342

    Article  CAS  PubMed  Google Scholar 

  35. Earle JD (1987) Selection of iodine 125 for the collaborative ocular melanoma study. Arch Ophthalmol 100:763–764

    Article  Google Scholar 

  36. Melia BM, Abramson DH, Albert DM et al (2001) Collaborative ocular melanoma study (COMS) randomized trial of I-125 brachytherapy for medium choroidal melanoma. visual acuity after 3 years COMS report no. 16 Collaborative Ocular Melanoma Study Group. Ophthalmology 108:348–366

    Article  CAS  PubMed  Google Scholar 

  37. Dolan J, Li Z, Williamson JF (2006) Monte Carlo and experimental dosimetry of an I-125 brachytherapy seed. Med Phys 33(12):4675–4684

    Article  CAS  PubMed  Google Scholar 

  38. Finger PT, Berson A, Ng T et al (2002) Palladium-103 plaque radiotherapy for choroidal melanoma: an 11-year study. Int J Radiat Oncol Biol Phys 54:1438–1445

    Article  PubMed  Google Scholar 

  39. Finger PT, Chin KJ, Duvall BS et al (2009) Palldium-103 ophthalmic plaque radiation therapy for choroidal melanoma: 400 treated patients. Ophthalmology 116:790–796

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, J., Liang, X., Pope, C., Li, Z. (2016). Physics: Low-Energy Brachytherapy Physics. In: Montemaggi, P., Trombetta, M., Brady, L. (eds) Brachytherapy. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-319-26791-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26791-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26789-0

  • Online ISBN: 978-3-319-26791-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics