Skip to main content

Upper Bounds for Number of Removed Edges in the Erased Configuration Model

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9479))

Included in the following conference series:

Abstract

Models for generating simple graphs are important in the study of real-world complex networks. A well established example of such a model is the erased configuration model, where each node receives a number of half-edges that are connected to half-edges of other nodes at random, and then self-loops are removed and multiple edges are concatenated to make the graph simple. Although asymptotic results for many properties of this model, such as the limiting degree distribution, are known, the exact speed of convergence in terms of the graph sizes remains an open question. We provide a first answer by analyzing the size dependence of the average number of removed edges in the erased configuration model. By combining known upper bounds with a Tauberian Theorem we obtain upper bounds for the number of removed edges, in terms of the size of the graph. Remarkably, when the degree distribution follows a power-law, we observe three scaling regimes, depending on the power law exponent. Our results provide a strong theoretical basis for evaluating finite-size effects in networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, H.: Limit theorems for a random graph epidemic model. Ann. Appl. Probab. 8, 1331–1349 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artzy-Randrup, Y., Stone, L.: Generating uniformly distributed random networks. Phys. Rev. E 72(5), 056708 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bingham, N.H., Doney, R.A.: Asymptotic properties of supercritical branching processes i: the galton-watson process. Adv. Appl. Probab. 6, 711–731 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blitzstein, J., Diaconis, P.: A sequential importance sampling algorithm for generating random graphs with prescribed degrees. Internet Math. 6(4), 489–522 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Comb. 1(4), 311–316 (1980). http://www.sciencedirect.com/science/article/pii/S0195669880800308

    Article  MATH  Google Scholar 

  6. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124(6), 1377–1397 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper, C., Dyer, M., Greenhill, C.: Sampling regular graphs and a peer-to-peer network. Comb. Probab. Comput. 16(04), 557–593 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Del Genio, C.I., Kim, H., Toroczkai, Z., Bassler, K.E.: Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PloS One 5(4), e10012 (2010)

    Article  Google Scholar 

  9. Embrechts, P., Goldie, C.M.: On closure and factorization properties of subexponential and related distributions. J. Aust. Math. Soc. (Series A) 29(02), 243–256 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. van den Esker, H., van der Hofstad, R., Hooghiemstra, G., Znamenski, D.: Distances in random graphs with infinite mean degrees. Extremes 8(3), 111–141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferreira, S.C., Castellano, C., Pastor-Satorras, R.: Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results. Phys. Rev. E 86(4), 041125 (2012)

    Article  Google Scholar 

  12. van der Hofstad, R.: Random graphs and complex networks. Unpublished manuscript (2007). http://www.win.tue.nl/rhofstad/NotesRGCN.pdf

  13. van der Hofstad, R., Hooghiemstra, G., Van Mieghem, P.: Distances in random graphs with finite variance degrees. Random Struct. Algorithms 27(1), 76–123 (2005)

    Article  MATH  Google Scholar 

  14. van der Hofstad, R., Hooghiemstra, G., Znamenski, D.: Distances in random graphs with finite mean and infinite variance degrees. Eurandom (2005)

    Google Scholar 

  15. van der Hoorn, P., Litvak, N.: Convergence of rank based degree-degree correlations in random directed networks. Moscow J. Comb. Number Theor. 4(4), 45–83 (2014). http://mjcnt.phystech.edu/en/article.php?id=92

    Google Scholar 

  16. van der Hoorn, P., Litvak, N.: Phase transitions for scaling of structural correlations in directed networks (2015). arXiv preprint arXiv:1504.01535

  17. Lee, H.K., Shim, P.S., Noh, J.D.: Epidemic threshold of the susceptible-infected-susceptible model on complex networks. Phys. Rev. E 87(6), 062812 (2013)

    Article  Google Scholar 

  18. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)

    Article  Google Scholar 

  19. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6(2–3), 161–180 (1995). http://onlinelibrary.wiley.com/doi/10.1002/rsa.3240060204/full

    Article  MathSciNet  MATH  Google Scholar 

  20. Molloy, M., Reed, B.: The size of the giant component of a random graph with a given degree sequence. Comb. Probab. Comput. 7(03), 295–305 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001). http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.026118

    Article  Google Scholar 

  22. Schlauch, W.E., Horvát, E.Á., Zweig, K.A.: Different flavors of randomness: comparing random graph models with fixed degree sequences. Soc. Netw. Anal. Min. 5(1), 1–14 (2015)

    Article  Google Scholar 

  23. Tabourier, L., Roth, C., Cointet, J.P.: Generating constrained random graphs using multiple edge switches. J. Exp. Algorithmics (JEA) 16, 1–7 (2011)

    MathSciNet  Google Scholar 

  24. Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pim van der Hoorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

van der Hoorn, P., Litvak, N. (2015). Upper Bounds for Number of Removed Edges in the Erased Configuration Model. In: Gleich, D., Komjáthy, J., Litvak, N. (eds) Algorithms and Models for the Web Graph. WAW 2015. Lecture Notes in Computer Science(), vol 9479. Springer, Cham. https://doi.org/10.1007/978-3-319-26784-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26784-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26783-8

  • Online ISBN: 978-3-319-26784-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics