Advertisement

Decomposition-Based Methods for FSM Implementation

  • Mariusz RawskiEmail author
  • Piotr Szotkowski
  • Paweł Tomaszewicz
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 45)

Abstract

Designing a complex digital system requires an effective method for modeling the sequential part of the system. One of the methods is the Finite State Machine based modeling. The implementation efficiency of the sequential part of the designed system has usually a great impact on the processing performance of the whole digital system. Petri nets, which are another method of modeling the sequential part of systems, can also be transformed into FSM-based models. Thus, development of effective synthesis methods for FSM implementation is very important. Digital systems are often implemented in FPGA architectures. Because of their specific structure, the most efficient synthesis methods are based on functional decomposition. This chapter discusses decomposition-based methods for FSM implementation targeting programmable structures.

Keywords

FSM Symbolic function decomposition Logic synthesis 

References

  1. 1.
    Adamski, M., Karatkevich, A., & Węgrzyn, M. (eds.) (2005). Design of Embedded Control Systems. New York: Springer.Google Scholar
  2. 2.
    Armstrong, D. B. (1962). On the efficient assignment of internal codes to sequential machines. IRE Transactions on Electronic Computers, EC, 11(5), 611–622.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ashar, P., Devadas, S., & Newton, A. R. (1989). Optimum and heuristic algorithms for finite state machine decomposition and partitioning. In 1989 IEEE International Conference on Computer-Aided Design. ICCAD-89. Digest of Technical Papers (pp. 216–219).Google Scholar
  4. 4.
    Ashar, P., Devadas, S., & Newton, A. R. (1990). A unified approach to the decomposition and re-decomposition of sequential machines. In Proceedings of the 27th ACM/IEEE Design Automation Conference (pp. 601–606).Google Scholar
  5. 5.
    Ashar, P., Devadas, S., & Newton, A. R. (1992). Sequential logic synthesis. VLSI, computer architecture, and digital signal processing., Kluwer international series in engineering and computer science Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  6. 6.
    Astola, J. T., & Stanković, R. S. (2006). Fundamentals of switching theory and logic design: A hands on approach. London: Springer.Google Scholar
  7. 7.
    Brayton, R. K., Rudell, R., Sangiovanni-Vincentelli, A., & Wang, A. R. (1987). MIS: a multiple-level logic optimization system. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(6), 1062–1081.CrossRefGoogle Scholar
  8. 8.
    Brzozowski, J. A., & Łuba, T. (2003). Decomposition of boolean functions specified by cubes. Journal of Multiple-Valued Logic and Soft Computing, 9, 377–417.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Chang, S.-C., Marek-Sadowska, M., & Hwang, T. T. (1996). Technology mapping for TLU FPGAs based on decomposition of binary decision diagrams. IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems, 15(10), 1226–1236.CrossRefGoogle Scholar
  10. 10.
    De Micheli, G., Brayton, R. K., & Sangiovanni-Vincentelli, A. (1985). Optimal state assignment for finite state machines. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 4(3), 269–285.CrossRefGoogle Scholar
  11. 11.
    Devadas, S., Hi-Keung, Ma., Newton, A. R., & Sangiovanni-Vincentelli, A. (1988). MUSTANG: state assignment of finite state machines targeting multilevel logic implementations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 7(12), 1290–1300.CrossRefGoogle Scholar
  12. 12.
    Dolotta, T. A., & McCluskey, E. J. (1964). The coding of internal states of sequential circuits. IEEE Transactions on Electronic Computers EC, 13(5), 549–562.CrossRefGoogle Scholar
  13. 13.
    Du, X., Hachtel, G., Lin, B., & Newton, A. R. (1991). MUSE: a multilevel symbolic encoding algorithm for state assignment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10(1), 28–38.CrossRefGoogle Scholar
  14. 14.
    Geiger, M., & Muller-Wipperfurth, T. (1991). FSM decomposition revisited: algebraic structure theory applied to MCNC benchmark FSMs. In 28th ACM/IEEE Design Automation Conference (pp. 182–185).Google Scholar
  15. 15.
    Hartmanis, J., & Stearns, R. E. (1966). Algebraic structure theory of sequential machines., Prentice-Hall international series in applied mathematics Englewood Cliffs: Prentice-Hall.zbMATHGoogle Scholar
  16. 16.
    Humphrey, W. S. (1958). Switching circuits with computer applications. New York: McGraw-Hill.Google Scholar
  17. 17.
    Jóźwiak, L., & Chojnacki, A. (2003). Effective and efficient FPGA synthesis through general functional decomposition. Journal of Systems Architecture, 49(4–6), 247–265.CrossRefGoogle Scholar
  18. 18.
    Jóźwiak, L., & Ślusarczyk, A. (2000). A new state assignment method targeting FPGA implementations. In Proceedings of the 26th Euromicro Conference (Vol. 1, pp. 50–59).Google Scholar
  19. 19.
    Jóźwiak, L., Ślusarczyk, A., & Chojnacki, A. (2003). Fast and compact sequential circuits for the FPGA-based reconfigurable systems. Journal of Systems Architecture, 49(4–6), 227–246.CrossRefGoogle Scholar
  20. 20.
    Lemberski, I. ( 1998). Modified approach to automata state encoding for LUT FPGA implementation. In Proceedings of the 24th Euromicro Conference (Vol. 1, pp. 196–199).Google Scholar
  21. 21.
    Lin, B., & Newton, A. R. (1989). Synthesis of multiple level logic from symbolic high-level description languages. In Proceedings of the IFIP International Conference on VLSI (pp. 187–196).Google Scholar
  22. 22.
    Lin, B., & Newton, A. R. (1989). Synthesis of multiple level logic from symbolic high-level description languages. In Proceedings of the IFIP TC 10/WG 10.5 International Conference on Very Large Scale Integration (pp. 187–196).Google Scholar
  23. 23.
    Lipsett, R., Ussery, C., & Schaefer, C. (1989). VHDL: Hardware description and design. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  24. 24.
    Łuba, T., Rawski, M., Tomaszewicz, P., & Zbierzchowski, B. (2008). Programowalne układy przetwarzania sygnałów i informacji. Wydawnictwa Komunikacji i Łączności.Google Scholar
  25. 25.
    Rawski, M. (2004). The novel approach to FSM synthesis targeted FPGA architectures. In Proceedings of IFAC Workshop on Programmable Devices and Systems, PDS, IFAC (pp. 169–174).Google Scholar
  26. 26.
    Rawski, M., Jóźwiak, L., & Łuba, T. (2001). Functional decomposition with an efficient input support selection for sub-functions based on information relationship measures. Journal of Systems Architecture, 47, 137–155. Elsevier Science B.V.CrossRefGoogle Scholar
  27. 27.
    Scholl, C. (2001). Functional decomposition with application to FPGA synthesis. Boston: Kluwer Academic Publisher.CrossRefGoogle Scholar
  28. 28.
    Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., et al. (1992). SIS: A system for sequential circuit synthesis. Berkeley: University of California.Google Scholar
  29. 29.
    Ślusarczyk, A. (2004). Decomposition and encoding of finite state machines for FPGA implementation. Eindhoven: Technische Universiteit Eindhoven.Google Scholar
  30. 30.
    Szotkowski, P. (2008). A comparison of symbolic functional decomposition algorithms for finite state machine implementation in FPGA devices. III Konferencja naukowo-techniczna doktorantów i młodych naukowców (pp. 381–385).Google Scholar
  31. 31.
    Szotkowski, P. (2009). Input selection methods for symbolic functional decomposition of finite state machines. In Proceedings of the 4th International PhD Students and Young Scientists Conference (pp. 362–367).Google Scholar
  32. 32.
    Szotkowski, P. (2010). Symbolic functional decomposition method for implementation of finite state machines in FPGA Devices. PhD thesis. Politechnika Warszawska.Google Scholar
  33. 33.
    Szotkowski, P. & Rawski, M. (2007). Symbolic functional decomposition algorithm for FSM implementation. In The International Conference on “Computer as a Tool” EUROCON (pp. 484–488).Google Scholar
  34. 34.
    Szotkowski, P. & Rawski, M. (2008). A graph-based symbolic functional decomposition algorithm for FSM implementation. In 2008 Conference on Human System Interactions (pp. 34–39).Google Scholar
  35. 35.
    Szotkowski, P., Rawski, M., & Selvaraj, H. (2009). A graph-based approach to symbolic functional decomposition of finite state machines. Systems Science, 35(2), 41–47.zbMATHGoogle Scholar
  36. 36.
    Villa, T., & Sangiovanni-Vincentelli, A. (1990). NOVA: State assignment of finite state machines for optimal two-level logic implementation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9(9), 905–924.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Mariusz Rawski
    • 1
    Email author
  • Piotr Szotkowski
    • 1
  • Paweł Tomaszewicz
    • 1
  1. 1.Institute of TelecommunicationsWarsaw University of TechnologyWarsawPoland

Personalised recommendations