An Application of Logic Controller for the Aerosol Temperature Stabilization

  • Michał DoligalskiEmail author
  • Marek Ochowiak
  • Anna Gościniak
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 45)


The chapter presents a logic control specification and its implementation by means of a microcontroller. The solution is dedicated to stabilisation of a spray temperature. The aim of the control is to produce a drug spray with specified temperature. The chapter draws a link between the viscosity of liquids and the droplets sizes in pneumatic inhalation process. The results indicate that the droplet size of the spray is influenced by the liquid viscosity. The liquid viscosity can be changed by temperature. Increasing the aerosol temperature decreases droplet diameters and hence increases the safety of inhaled therapy. A control system and new construction of thermostated nebulizer improving the inhalation process has been proposed.


Logic controllers RLC FPGA UML Atomization Spray Droplet size Temperature stabilisation 


  1. 1.
    Azzopardi, B. J. (1979). Measurements of drop sizes. International Journal of Heat and Mass Transfer, 22, 1245–1279.CrossRefGoogle Scholar
  2. 2.
    Bisgaard, H., O’Callaghan, C., & Smaldone, G. C. (Eds.). (2002). Drug delivery to the lung. New York: Marcel Dekker Inc.Google Scholar
  3. 3.
    Broniarz-Press, L., Ochowiak, M., Markuszewska, M., & Włodarczak, S. (2013). The effect of viscosity on the atomization process in medical inhaler (in Polish). Chemical Engineering Equipment, 4(52), 291–292.Google Scholar
  4. 4.
    Bukowiec, A., & Doligalski, M. (2013). Petri net dynamic partial reconfiguration in FPGA. In A. Quesada-Arenciba, R. Moreno-Diaz, & F. Pichler (Eds.), Computer aided systems theory—Eurocast 2013 (Vol. 8111, pp. 436–443)., Lecture Notes in Computer Science, Berlin: Springer.CrossRefGoogle Scholar
  5. 5.
    Bukowiec, A., & Tkacz, J. (2014). Dual simulation of application specific logic controllers based on petri nets. In Multimedia and ubiquitous engineering (MUE) : 8th international conference (pp. 399–404)., Lecture Notes in Electrical Engineering Zhangjiajie, Chiny. (ISBN: 978-3-642-54900-7)Google Scholar
  6. 6.
    Devadason, S. G. (2006). Advances in aerosol therapy for children with asthma. Journal of Aerosol Medicine, 19, 61–66.CrossRefGoogle Scholar
  7. 7.
    Doligalski, M., & Bukowiec, A. (2013). Partial reconfiguration in the field of logic controllers design. International Journal of Electronics and Telecommunications, 59(4), 351–356.CrossRefGoogle Scholar
  8. 8.
    Dorman, R. G. (1952). The atomization of liquids in a flat spray. British Journal of Applied Physics, 3, 189–192.CrossRefGoogle Scholar
  9. 9.
    Gradon, L., & Marijnissen, J. C. M. (2003). Optimization of aerosol drug delivery. Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
  10. 10.
    Gradon, L., & Podgorski, A. (2004). Production of nanostructured particles for medical applications (in polish). Inżynier Chemical Processing, 25, 1915–1923.Google Scholar
  11. 11.
    Grobelna, I., Grobelny, M., & Adamski, M. (2014). Model checking of UML activity diagrams in logic controllers design. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, & J. Kacprzyk (Eds.), Proceedings of the ninth international conference on dependability and complex systems DepCoS-RELCOMEX. June 30–July 4, 2014, Brunów, Poland (Vol. 286, pp. 233–242)., Advances in Intelligent Systems and Computing Heidelberg: Springer International Publishing.CrossRefGoogle Scholar
  12. 12.
    Hasson, D., & Mizrahi, J. (1961). The drop size of fan spray nozzles. Transactions of the Institution of Chemical Engineers, 39, 415–422.Google Scholar
  13. 13.
    Karatkevich, A. (2007). Dynamic analysis of Petri net-based discrete systems. Lecture Notes in Control and Information Sciences Berlin: Springer.Google Scholar
  14. 14.
    Lefebvre, A. H. (1989). Atomization and sprays. New York: Hemisphere Publishing Corporation.Google Scholar
  15. 15.
    McCallion, O. N. M., & Patel, M. J. (1996). Viscosity effects on nebulisation of aqueous solutions. International Journal of Pharmaceutics, 130, 245–249.CrossRefGoogle Scholar
  16. 16.
    McCallion, O. N. M., Taylor, K. M. G., Bridges, P. A., Thomas, M., & Taylor, A. J. (1995). Jet nebulisers for pulmonary drug delivery. International Journal of Pharmaceutics, 130, 1–11.CrossRefGoogle Scholar
  17. 17.
    Moskal, A., & Sosnowski, T. R. (2009). Dynamics of aerosol pulse in a simplified mouth-throat geometry and its significance for inhalation drug delivery. Chemical Engineering and Processing, 30, 545–558.Google Scholar
  18. 18.
    Nagel, M. W., Wiersema, K. J., Bates, L. S., & Mitchell, J. P. (2002). Performance of large- and small-volume valved holding chambers with a new combination long-term bronchodilator/anti-inflammatory formulation delivered by pressurized metered dose inhaler. Aerosol Medications, 15, 427–433.CrossRefGoogle Scholar
  19. 19.
    Petersen, F.J. (2004). A new approach for pharmaceutical sprays. Effervescent atomization. Atomizer design and spray characterization. Ph. D thesis. Department of Pharmaceutics: The Danish University of Pharmaceutical Sciences.Google Scholar
  20. 20.
    Petersen, F. J., Worts, O., Schaefer, T., & Sojka, P. E. (2004). Design and atomization properties for an inside-out type effervescent atomizer. Drug Development and Industrial Pharmacy, 30(3), 319–326.CrossRefGoogle Scholar
  21. 21.
    Pilcer, G., & Amighi, K. (2010). Formulation strategy and use of excipients in pulmonary drug delivery. International Journal of Pharmaceutics, 392, 1–19.CrossRefGoogle Scholar
  22. 22.
    Sheth, P., Stein, S. W., & Myrdal, P. B. (2013). The influence of initial atomized droplet size on residual particle size from pressurized metered dose inhalers. International Journal of Pharmaceutics, 455, 57–65.CrossRefGoogle Scholar
  23. 23.
    Tkacz, J., & Adamski, M. (2012). Logic design of structured configurable controllers. In IEEE 3rd international conference on networked embedded systems for every application—NESEA. (2012) (p. 6). Wielka Brytania, Liverpool.Google Scholar
  24. 24.
    Wiśniewski, R., Barkalov, A., & Titarenko, L. (2008). Partial reconfiguration of compositional microprogram control units implemented on an FPGA. In Proceedings of IEEE east-west design & test symposium—EWDTS 08 (pp. 80–83). Lviv, Ukraine: Kharkov National University of Radioelectronics, Lviv, The Institute of Electrical and Electronics Engineers, Inc.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Michał Doligalski
    • 1
    Email author
  • Marek Ochowiak
    • 2
  • Anna Gościniak
    • 2
  1. 1.Institute of Computer Engineering and ElectronicsUniversity of Zielona GóraZielona GóraPoland
  2. 2.Faculty of Chemical Technology, Institute of Chemical Technology and EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations