Skip to main content

Optimal Operation of a Lumostatic Microalgae Cultivation Process

  • Chapter
  • First Online:
Developments in Model-Based Optimization and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 464))

Abstract

This chapter proposes the optimization of batch microalgae cultures in artificially lighted photobioreactors . The strategy consists in controlling the incident light intensity so that the microalgae growth rate is maximized. Two approaches were developed and compared. In the first one, the ratio between the incident light intensity and the cell concentration (light-to-microalgae ratio) is optimized, either offline or online, and then maintained at its optimal value. In the second approach, the cells growth rate is maintained at its optimal value by means of nonlinear model predictive controller (NMPC). The proposed control strategies are illustrated and their efficiency is assessed, in simulation, for Chlamydomonas reinhardtii batch cultures. The proposed lumostatic operation strategies are shown to lead to a higher cell productivity and to a more efficient light utilization in comparison to conventional constant light operation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Uses light as source of energy and the only carbon source is CO\(_2\).

  2. 2.

    Continuous addition and withdrawal of medium during the culture.

  3. 3.

    No addition or removal of medium during the culture. It is also called batch mode.

References

  1. J. Abdollahi, S. Dubljevic, Lipid production optimization and optimal control of heterotrophic microalgae fed-batch bioreactor. Chem. Eng. Sci. 84, 619–627 (2012)

    Article  Google Scholar 

  2. O. Bernard, Hurdles and challenges for modelling and control of microalgae for CO\(_2\) mitigation and biofuel production. J. Process Control 21, 1378–1389 (2011)

    Article  Google Scholar 

  3. X. Chen, Q.Y. Goh, W. Tan, I. Hossain, W.N. Chen, R. Lau, Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour. Technol. 102, 6005–6012 (2011)

    Article  Google Scholar 

  4. P. Chevalier, D. Proulx, P. Lessard, W.F. Vincent, J. de la Noue, Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 12, 105–112 (2000)

    Article  Google Scholar 

  5. Y. Chisti, Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007)

    Article  Google Scholar 

  6. S.L. Choi, I.S. Suh, C.-G. Lee, Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb. Technol. 33, 403–409 (2003)

    Article  Google Scholar 

  7. T.F. Coleman, Y. Li, An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Das, J.P. Obbard, Incremental energy supply for microalgae culture in a photobioreactor. Bioresour. Technol. 102, 2973–2978 (2011)

    Article  Google Scholar 

  9. B. Degrenne, J. Pruvost, M. Titica, H. Takache, J. Legrand, Kinetic modeling of light limitation and sulphur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii Part II: Definition of Model-Based Protocols and Experimental Validation. Biotechnol. Bioeng. 108, 2288–2299 (2011)

    Article  Google Scholar 

  10. D. Dochain (ed.), Automatic Control of Bioprocesses (ISTE and Wiley, London, 2008)

    Google Scholar 

  11. R. Fletcher, Practical Methods of Optimization, 2nd edn. (Wiley-Interscience, New York, 1987)

    MATH  Google Scholar 

  12. S. Fouchard, J. Pruvost, B. Degrenne, M. Titica, J. Legrand, Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification. Biotechnol. Bioeng. 102, 232–245 (2009)

    Article  Google Scholar 

  13. I. Havlik, P. Lindner, T. Scheper, K.F. Reardon, On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnol. 31, 406–414 (2013)

    Article  Google Scholar 

  14. G. Ifrim, M. Titica, L. Boillereaux, S. Caraman, Feedback linearizing control of light-to-microalgae ratio in artificially lighted photobioreactors, in Computer Applications in Biotechnology Conference (Mumbai, India, 2013)

    Google Scholar 

  15. G.A. Ifrim, M. Titica, G. Cogne, L. Boillereaux, J. Legrand, S. Caraman, Dynamic pH model for autotrophic growth of microalgae in photobioreactor: a tool for monitoring and control purposes. AIChE J. 60, 585–599 (2014)

    Article  Google Scholar 

  16. L. Jiang, S. Luo, X. Fan, Z. Yang, R. Guo, Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO\(_2\). Appl. Energy 88, 3336–3341 (2011)

    Article  Google Scholar 

  17. R. Kandilian, T.-C. Tsao, L. Pilon, Control of incident irradiance on a batch operated flat-plate photobioreactor. Chem. Eng. Sci. 119, 99–108 (2014)

    Article  Google Scholar 

  18. M.K. Lam, K.T. Lee, A.R. Mohamed, Current status and challenges on microalgae-based carbon capture. Int. J. Greenh. Gas Control 10, 456–469 (2012)

    Article  Google Scholar 

  19. H.-S. Lee, Z.-H. Kim, S.-E. Jung, J.-D. Kim, C.-G. Lee, Specific light uptake rate can be served as a scale-up parameter in photobioreactor operations. J. Microbiol. Biotechnol. 16, 1890–1896 (2006)

    Google Scholar 

  20. D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Pandey (ed.), Biofuels: Alternative Feedstocks and Conversion Processes (Academic Press, San Diego, 2011)

    Google Scholar 

  22. L. Pottier, J. Pruvost, J. Deremetz, J.F. Cornet, J. Legrand, C.G. Dussap, A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus reactor. Biotechnol. Bioeng. 91, 569–582 (2005)

    Article  Google Scholar 

  23. H. Takache, G. Christophe, J.F. Cornet, J. Pruvost, Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors. Biotechnol. Prog. 26, 431–440 (2010)

    Google Scholar 

  24. S. Tebbani, F. Lopes, R. Filali, D. Dumur, D. Pareau, Nonlinear predictive control for maximization of CO\(_2\) bio-fixation by microalgae in a photobioreactor. Bioprocess Biosyst. Eng. 37, 83–97 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge support from the Romanian French research cooperation project PACBIO and from the French ANR Program “Algo-H2” ANR-10-BIOE-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihem Tebbani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tebbani, S., Titica, M., Ifrim, G., Barbu, M., Caraman, S. (2015). Optimal Operation of a Lumostatic Microalgae Cultivation Process. In: Olaru, S., Grancharova, A., Lobo Pereira, F. (eds) Developments in Model-Based Optimization and Control. Lecture Notes in Control and Information Sciences, vol 464. Springer, Cham. https://doi.org/10.1007/978-3-319-26687-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26687-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26685-5

  • Online ISBN: 978-3-319-26687-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics